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Abstract

Cancer is a genetic disorder, meaning that a plethora of different mutations, whether somatic or germ line, underlie the eti-
ology of the ‘Emperor of Maladies’. Point mutations, chromosomal rearrangements and copy number changes, whether
they have occurred spontaneously in predisposed individuals or have been induced by intrinsic or extrinsic (environmental)
mutagens, lead to the activation of oncogenes and inactivation of tumor suppressor genes, thereby promoting malignancy.
This scenario has now been recognized and experimentally confirmed in a wide range of different contexts. Over the past
decade, a surge in available sequencing technologies has allowed the sequencing of whole genomes from liquid malignan-
cies and solid tumors belonging to different types and stages of cancer, giving birth to the new field of cancer genomics.
One of the most striking discoveries has been that cancer genomes are highly enriched with mutations of specific kinds. It
has been suggested that these mutations can be classified into ‘families’ based on their mutational signatures. A mutational
signature may be regarded as a type of base substitution (e.g. C:G to T:A) within a particular context of neighboring nucleo-
tide sequence (the bases upstream and/or downstream of the mutation). These mutational signatures, supplemented by
mutable motifs (a wider mutational context), promise to help us to understand the nature of the mutational processes that
operate during tumor evolution because they represent the footprints of interactions between DNA, mutagens and the en-
zymes of the repair/replication/modification pathways.
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Introduction

Mutations provide the raw material for natural selection in evo-
lution, but their rate is maintained at a low level to minimize
the reduced fitness that would be associated with numerous
deleterious mutations. Multicellular organisms can however
dramatically elevate mutation rates in subpopulations of cells

in certain chromosomal regions, for example in the variable re-
gions of immunoglobulin genes in B cells. The mutator effect is
achieved by the recruitment of editing activation-induced cyti-
dine deaminase (AID) to convert cytosines to uracil, together
with error-prone DNA polymerases (pols) that augment the mu-
tator effect by inaccurate repair of the uracils [1, 2]. However,
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aberrant regulation of the elaborate machinery of region-
specific hypermutagenesis under pathological conditions can
lead to cancer and other diseases [1, 3, 4]. Strong mutator
phenotypes are also caused by errors in the global system of
DNA replication and maintenance [5–7]. As a result of these ab-
errations, many cancer genomes are characterized by a large
number of changes to their constitutional genetic information.
The underlying mechanisms of genetic change and the factors
that determine mutational distribution patterns in tumor gen-
omes are multifaceted and have long been regarded as being re-
fractory to direct investigation. However, recent advances in the
field have led to the emergence of precision (or personalized)
medicine in a cancer context [8, 9].

Tumorigenesis is a multistep process. It begins with the trans-
formation of a single cell that acquires several of the six hallmarks
of cancer [10]. Cells gain these characteristics through numerous
mutations [11, 12] caused by errors of DNA replication, the action
of exogenous mutagens or endogenous DNA damage [13, 14]. It is
likely that the mutator phenotype is a feature of many different
cancers [15]. The ensuing genetic assault leads to the activation of
oncogenes and inactivation of tumor suppressors, thereby pro-
moting malignancy [4, 16]. Impairment of DNA pols, alterations in
nucleotide pools or expression of editing deaminases promote
tumors because cells become unable to accurately replicate and
repair their DNA [4, 17–19]. The sophisticated machinery of repli-
cation and genome maintenance can be damaged by mutations,
or altered by physiological conditions, such that it can become a
potent mutagenic factor in cancer [20, 21]. The frequencies of sin-
gle base-pair substitutions, chromosomal rearrangements and
changes in gene or chromosomal copy number are greatly
enhanced by various environmental and intrinsic mutagens, espe-
cially in genetically or developmentally predisposed individuals
whose cells are unable to properly maintain genome integrity [22].
These effects are tissue-specific: for example, the inherited lack of
mismatch repair and/or the exonuclease domain of replicative
DNA pols predisposes to colorectal cancer [10, 23]; abnormal DNA
double-strand break (DSB) repair leads to an increase in incidence
of breast and ovarian cancer [24]; defects in translesion DNA hol
g cause skin cancer [25]. Some of the mutations leading to defect-
ive DNA metabolism can predispose to pancreatic cancer [26].
However, compromised DNA maintenance is not the only cause
of cancer. At the beginning of this century, it was discovered that
in addition to faithful repair, human cells are equipped with
powerful mutator machines—proteins that act in a highly muta-
genic way. Most prominent are the DNA/RNA editing cytosine
deaminases of the AID/APOBEC family [1] and inaccurate transle-
sion synthesis DNA pols [27]. The availability of intrinsic mutators
provides an opportunity to create variability ‘on demand’ as an in-
tegral part of developmental programs and adaptive responses
but clearly poses a threat to genome integrity in case of their
faulty regulation causing cancer and other diseases [13, 22, 28, 29].

One powerful approach to understand the mechanisms of
mutagenesis in cancer is to analyze the DNA sequence context
of mutations in tumors [4, 14, 30–32]. The methodology was
introduced in the 1990s in the context of deciphering the mech-
anisms of somatic hypermutation (SHM) in humoral immunity
[30, 33, 34] and hypermutagenesis in retroviruses [35].
Mutations have been found in many types of cancer in DNA se-
quence contexts that are similar to those associated with
mutagen-induced mutagenesis in model systems. It was found
that AID (mutations in the WRC motif, the mutable C being
underlined, W¼A/T, R¼A/G) may contribute to gastric and
hemopoietic cancers [3, 36], especially in sites subject to cyto-
sine methylation [32]; deaminases participating in innate

immunity, APOBEC3A and APOBEC3B (the TCW/WGA motif, the
mutable C being underlined, W¼A/T) may contribute to solid
tumors, including breast, lung and others [37–40]. The genomes
of several types of cancer may exhibit signatures of environ-
mental mutagens, e.g. tobacco smoke for lung cancer [41], ultra-
violet (UV) radiation for skin cancer and ionizing radiation for
many other cancers [42, 43]. These examples will be discussed
in more detail in the next chapters.

Complete cancer genomes and genomes of
other model systems

Emerging genetic factors predisposing to cancer or connected
with sporadic cancer include defects of systems maintaining
proper quality of nucleotide pools [44], proofreading by replica-
tive DNA pols, mismatch repair [5, 7] and the misregulation of
editing deaminases [45]. The worst appears to be a combination
of pool imbalance and pol defects, leading to mutational catas-
trophe and, likely, cancer [46]. Low replication fidelity or exten-
sive genome editing causes hereditary and sporadic cancer and
fuels the acquisition of drug resistance. On the other hand, low
replication fidelity renders many cancer cells more sensitive to
certain antitumor agents, which could be used as therapeutic
tools to contain tumor cells [47, 48].

It is imperative to highlight the point that mutational signa-
tures attributable to each particular cancer type were first found
and characterized by means of the extensive use of model organ-
isms, bacteria and yeast [49–56]. Despite enormous progress in
our understanding of the mechanisms of mutagenesis, the latest
data prompt new questions and stimulate the search for new
approaches and methods aimed at addressing these questions.
Among the most pressing issues are the mechanisms of muta-
genesis in tumor cells. The transient hypermutable phenotype
that was described in cancer cells and in cultures of microorgan-
isms is worth comprehensive study [4]. Most of the studies
devoted to the mutational process were conducted in haploid or-
ganisms. It was previously noticed that mutagenesis in diploid
organisms possesses some special features [55, 57, 58].

Somatic mutations in normal tissues

Not only cancer genomes but also the genomes of benign cells ac-
quire somatic mutations during the course of apparently normal
development and aging. These mutations arise because of vari-
ous endogenous factors such as the activity of mobile elements,
DNA pol slippage, DNA DSBs, inefficient DNA repair, unbalanced
chromosomal segregation and various exogenous factors such as
cigarette smoke and UV exposure [59, 60]. The genomes of som-
atic cells carry a substantial burden of somatic mutations and
footprints of exogenous and endogenous mutagenic processes.
For instance, comparing the mutational burden in skin fibro-
blasts from forearm and hip from the same donors, it was ascer-
tained that the UV-induced (primarily C:G>T:A and
CC:GG>TT:AA) and endogenous mutation rates per year in
exposed skin were >2-fold higher than that in protected areas
[61]. In similar vein, the impact of smoking was apparent in lung,
and an increased burden of C:G>A:T mutations was detectable
at tissue-level resolution in smokers indicating pervasive clonal
growth (with implications for field cancerization [62, 63]).
Endogenous factors also lead to a context-specific increase in
mutation burden. For example, somatic variants in peripheral
blood occasionally carried signatures of endogenous mutational
processes including AID-driven targeted mutagenesis [63–65].
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Spontaneous deamination of methylated cytosine residues ap-
pears to be an important source of somatic mutations in benign
colon and small intestine but not in liver [66]. Germ line BRCA1
and BRCA2 mutations are associated with increased DNA DSB re-
pair defects and a higher burden of genomic alterations (e.g.
amplifications and deletions) in benign tissues [67]. It was how-
ever difficult to ascertain the developmental lineage in which the
majority of somatic mutations were acquired. Using
transcription-coupled repair signatures, Yadav et al. [63] were
able to associate somatic mutations with transcriptional profiles
of the affected cells and infer that the vast majority of somatic
mutations detectable in peripheral blood had probably been
acquired in the lymphoid progenitor cells and hematopoietic
stem cells.

The burden of somatic mutations in benign cells appears to
be substantial [68–70]. According to some estimates [71], almost
half of the somatic mutations in cancer genomes have accumu-
lated before neoplastic transformation. This translates into a
burden of 10�2–102 mutations per Mb on a genome-wide scale,
and 10–100 mutations in protein-coding regions in a single som-
atic cell in benign human tissues. Although estimates of the rate
of stem-cell divisions in adult tissues are controversial and vary
widely [72], this is roughly consistent with estimates of the som-
atic mutation rate (2–10 mutations per diploid genome per cell
division) calculated in a number of human cell types including B
and T lymphocytes and fibroblasts (reviewed in [73]). Another es-
timate based on sequencing clonally derived organoids from
small intestine, colon and liver of human donors (aged between
3–87 years) suggested that the mutation rate was comparable
among progenitor cells in those tissues: �40 novel mutations per
year, despite the large difference in cancer incidence between
these organs [66]. Reliable single-cell data for other tissue types
are still relatively sparse. It is not yet known whether stem-cell
division rates, and hence, the increase in mutation burden, are
constant over the lifetime of the individual. This notwithstand-
ing, these data indicate that as with cancer genomes, the gen-
omes of normal benign cells also carry a substantial burden of
somatic mutations during development and aging.

The tissue-level functional consequences of somatic muta-
tions present in a single somatic cell are limited, unless the cell
undergoes clonal growth [63, 67, 73]. Clonal growth certainly ap-
pears to be widespread in skin and blood. Tissue-level studies
that complemented single-cell analyses found that �2–30 som-
atic mutations and 1–8 somatic copy number alterations were
detectable at tissue-level resolution (>1% allele frequency) in
benign tissues [60, 63, 67]. In some cases, clonally expanded cell
populations carried cancer gene mutations (however, this was
not obligate, and there were exceptions). For instance, clonal
hematopoiesis is often characterized by DNMT3A and TET2 mu-
tations [64, 74]. In benign skin tissues, clones carrying BRAF and
TP53 mutations were common [73]. It is possible that such early
driver mutations (described in more detail below) have a role in
initiating field cancerization and premalignant lesions.
Mutational signatures suggested that such mutations tend to
propagate under relaxed purifying selection (i.e. nearly neutral
and/or positive selection) in nonmalignant tissues [63, 73].

Mutation databases in cancer genetics and
potential problems associated with their use

The major cancer genomic databases are listed in Table 1.
These databases contain mutations identified in cancer sam-
ples using a variety of different methods, e.g. allele-specific

polymerase chain reaction (PCR), SNP chip arrays, targeted gene
sequencing, whole-exome sequencing and whole-genome
sequencing. The heterogeneity of these data is such that it can
lead to certain experimental bias, particularly study bias associ-
ated with known cancer driver genes and variants. Analysis of
mutational signatures, motifs or spectra requires unbiased data
sets, such as whole-genome/exome sequences and additional
preprocessing. Therefore, databases providing access to data
from whole-genome and whole-exome studies, such as the
International Cancer Genome Consortium (ICGC), The Cancer
Genome Atlas (TCGA), COSMIC WGS, CBioPortal, Pediatric
Cancer Data Portal (PCDP) and UCSC Cancer Genomics Browser
(listed in Table 1), have been a prerequisite for mutational sig-
nature research.

In model organisms, mutation accumulation studies involve
the genome sequencing of subsequent generations. As
described in the previous chapter, these studies reveal both the
mutation rate and the mutational spectrum associated with
spontaneous mutagenesis. Other mutational studies have
focused on controlled experiments exposing cell cultures to cer-
tain mutagens or genetically modifying enzymes involved in
replication and DNA repair machinery. Human cell lines are
cataloged in Biobanks (Table 1), and data are aggregated in data-
bases such as Cancer Cell Line Encyclopedia (CCLE) and COSMIC
CLP, whereas for model organisms, the data are scattered
around various resources. Many of the known carcinogens are
mutagens; when the mutational spectrum of a given mutagen
is known, it may be used to identify the likely cause of cancer.
Known mutagenic substances and pharmacogenomics data are
available in the databases Risctox, COSMIC, CCLE and the UCSC
Cancer Genomics Browser (Table 1).

Large-scale cancer genomics projects (Table 1) have gener-
ated high volumes of data that, in principle, are invaluable in
understanding the biology, initiation and progression of human
cancers. One caveat, however, is how to distinguish artifactual
DNA damage from the bona fide somatic mutations that
occurred in the tumor; Chen et al. [75] have recently reported
that mutagenic damage accounts for the majority of the errone-
ous identification of variants in the low to moderate (1–5%) fre-
quency range in whole (cancer)-genome sequencing studies. If
many of the somatic mutations supposedly identified in human
cancer genomes are indeed spurious (implying that some of the
key data sets used for the analysis of cancer mutational signa-
tures have been compromised from the outset), then some of
the conclusions drawn from early studies may have to be re-
visited once the accuracy and reliability of the mutation data
sets have been ascertained.

Mutable motifs: from the DNA context of
modifying enzymes and mutagens to
mechanisms of mutagenesis

There is no doubt that nucleotide sequence context influences
mutation probability [30, 76–85]. Mutable motifs constitute a
well-established approach to study mutagenesis because they
represent the fingerprints of interactions between DNA and
mutagens/repair/replication/modification enzymes, thereby
providing clues as to the underlying molecular mechanisms of
mutation/recombination [79, 83, 84]. Mutable motifs are usually
derived from mutation spectra, sets of data that include the fre-
quency of mutations in a target nucleotide sequence under
defined conditions. Mutational spectra are often determined by
applying phenotypic selection to an experimental mutagenesis
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system. Phenotypic selection restricts the mutational spectrum
to detectable changes where a mutation has given rise to a
phenotypic change. Alternatively, mutations are identified by
random sequencing of DNA clones or PCR-amplified DNA mol-
ecules. However, this approach only works well when the fre-
quency of mutations is extremely high (roughly in excess of
10�3 per nucleotide). A mutational spectrum is usually dis-
played with the target nucleotide sequence along a horizontal
linear axis, and each mutational variant listed vertically above
the nucleotide it replaces (Figure 1, [86]). In other words, a muta-
tional spectrum exhibits the types and frequencies of context-
dependent mutations associated with a particular experimental
system. It may be either difficult or impossible to integrate mu-
tational spectra originating from different studies. A mutational
motif is a generalized representation of mutated nucleotides
and their context associated with a mutagenic factor. Motifs
often lack quantitative information and serve as qualitative de-
scriptors of most frequently mutated sites, allowing integration
of results from different studies. Examples of motifs are the AID
motif WRCY/RGYW (the mutable position is underlined, W¼A
or T, R¼purine and Y¼pyrimidine) with C to T/G/A mutations
[30], and error-prone DNA pol g attributed AID-related muta-
tions (A to G/C/G) at WA/TW motifs [27]. Examples of mutable
motifs [27, 30, 32, 40, 58, 77, 83, 87, 88] are shown in Table 2.

Several methods are available to analyze mutational spectra
represented as a set of aligned sequences (Table 3); these
approaches are particularly useful when applied to a set of so-
called ‘hotspot’ sites (sites with an elevated frequency of muta-
tions, see [83, 84] for a discussion of hotspot sites). For example,
a set of aligned sites can be analyzed to derive a consensus
sequence [89] (Table 3) using one of several available
approaches as described by Day and McMorris [90, 91]. Methods
that rely on arbitrary discrimination between informative and

noninformative positions may lead to controversial and/or un-
reliable results. Simple consensus sequences can be misleading
especially when the data set is small; however, they can be re-
constructed using any mutational spectrum and any subset of
positions.

The binomial test can also be used to study consensus se-
quences at or near mutation hotspots [92]. In this method, a
number NIJ of a nucleotide ‘I’ is calculated in each position ‘J’ in
a set of ‘M’ aligned mutation hotspot sequences (Table 3). The
probability P(NIJ,M,FI) to find NIJ or more nucleotides ‘I’ in a pos-
ition ‘J’ is calculated taking a frequency FI of a nucleotide ‘I’ in a
target sequence as an expected number of the nucleotide ‘I’ in
the position ‘J’. A nucleotide with the lowest probability
P(NIJ,M,FI) among all possible nucleotides in a position ‘J’ is ac-
cepted as a consensus nucleotide for this position if P(NIJ,M,FI)
for this nucleotide is below the significance level, a. It is import-
ant to note that a¼ 0.05 cannot be used to reject or accept a stat-
istical hypothesis owing to the multiplicity of binomial tests;
moreover, these tests are strongly interdependent for each pos-
ition. To estimate the significance level for P(NIJ,M,FI),
Malyarchuk et al. [92] developed a resampling procedure, which
takes into account the multiplicity of binomial tests.

Multiple regression models can be used for simultaneous
analysis of how several neighboring positions influence muta-
tion frequency. The purpose of multiple regression analysis is
to learn more about the relationship between several independ-
ent (or predictor) variables Xi and a dependent (or criterion)
variable Y. Stormo et al. [93] used multiple linear regression ana-
lysis to see how nucleotide sequence context affects 2-amino-
purine mutagenesis in the lacI gene. The data indicate that the
two nucleotides immediately preceding the mutable base
strongly affect the frequency of mutation. However, the method
assumes a direct linear correlation between the frequency of

Table 1. Databases of cancer mutations

Database URL Statistics Description

COSMIC http://cancer.sanger.ac.uk/cosmic 4M coding mutations, 23 489
publications

Curated collection of mutations in
cancer includes data from vari-
ous sources

COSMIC-Cell Lines http://cancer.sanger.ac.uk/cell_lines Exome sequences of 1015 cancer
cell lines

Filtered variants from extensively
used cancer cell lines, including
NCI-60 set

COSMIC-WGS http://cancer.sanger.ac.uk/wgs 28 366 samples Large-scale cancer sequencing pro-
jects; genome-wide screens

TCGA https://cancergenome.nih.gov 32 cancer types Publicly available catalog of major
cancer-causing genomic
alterations

PCDP https://www.stjude.org/research/
pediatric-cancer-genome-project.html

2813 samples from 17 cancer types Data from PCGP, TARGET, DKFZ,
MAGIC, BROAD, etc.

ICGC http://icgc.org 16 000þ donors, 70 projects and 21
tumor sites

Catalog of major cancer-causing
genomic alterations obtained as
result of large international
projects

CCLE https://portals.broadinstitute.org/ccle/home 1074 samples Compilation of genomic data from
human cell lines

Risctox database http://risctox.istas.net/en/index.asp?
idpagina¼607

1750 carcinogenic and mutagenic
substances

Describes hazardous substances

CBioPortal http://www.cbioportal.org/ 147 cancer studies Includes cancer samples from
TCGA, ICGC and other sources

UCSC Cancer
Genomics Browser

http://xena.ucsc.edu/ 720 data sets including TCGA and
CCLE

Collection of cancer genomics data
with interactive tools
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mutations in detectable positions and factors attributable to the
nucleotide sequence context, and that the factors are distrib-
uted normally; in general, these assumptions are not valid for
experimental mutational spectra. Rogozin and Kolchanov [30]
used a heuristic classification approach and a Monte Carlo pro-
cedure to build hotspot consensus sequences. This procedure
assesses the nonrandomness of nucleotides adjacent to or near

a mutation hotspot [30]. Regression trees have also been used to
analyze the effect of nucleotide sequence context on mutation
frequency [94]. Regression trees are mathematically tenable, do
not restrain the number of variables (as do heuristic methods)
and are recommended for the study of simulated and real mu-
tation spectra [94]. However, these approaches are based on
complex assumptions and need large data sets [94].

Figure 1. Mutational spectrum of human DNA pol g in the lacZ gene without phenotypic selection [86].
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Another important computational task is to identify
overrepresentation of somatic mutations in known mutable
motifs. Usually, the frequency of known mutable motifs for
somatic mutations is compared with the frequency of these
motifs in the vicinity of the mutated nucleotide. Specifically, for
each base substitution, 120 or 150 bases of DNA sequence cen-
tered at the mutation are extracted (the DNA neighborhood).
This approach has been thoroughly tested and the high accur-
acy of the analysis demonstrated [38]. The frequency of mutable
motifs in the positions of somatic mutations was compared
with the frequency of the same motifs in the DNA neighborhood
(Figure 2) using Fisher’s exact test (2 � 2 table) and the Monte
Carlo test [32, 38].

Methods to derive mutational signatures

Cancer genome studies necessitate working with large
amounts of data; the obvious problems of analysis of such
data were resolved to a large extent by means of the so-called

mutational signature technique [16, 31, 95, 96]. As it is usually
not possible to define the DNA strand on which a mutation
occurred (distinguishing, e.g., C>T mutations from G>A mu-
tations on the opposite strand), there are essentially only six
types of substitutions to be analyzed. Similarly, there are 96
context-dependent mutations that consider two nucleotides
in the flanking 50 and 30 positions of the mutated nucleotide.
Analysis of mutational spectra of context-dependent muta-
tions in cancer patients involves pooling all mutations from
cancer samples into a discrete distribution according to the
mutation types. For multiple patients/samples, their context-
dependent mutations can be represented in the form of a
nonnegative matrix X, where columns correspond to samples,
and rows represent context-dependent mutation types. The
problem is to find two nonnegative matrices W and H as a re-
sult of decomposition of X �WH, where W corresponds to mu-
tational signatures, and H corresponds to exposure of samples
to mutational processes described by the signatures [16]. This
so-called nonnegative matrix factorization (NMF) method was
introduced in 1999 [97] and was subsequently applied to iden-
tify metagenes and pathways in cancer gene expression
data [95], most recently being used to derive mutational signa-
tures [16].

There are some variations of this basic technique. For ex-
ample, Temiz et al. [98] presented a 32� 12 mutation matrix that
captures the nucleotide pattern two nucleotides upstream and
downstream of the mutation. In this study, a somatic auto-
somal mutation matrix (SAMM) representing tumor-specific
mutations and mechanistic template mutation matrices
(MTMMs) representing oxidative DNA damage, UV-induced
DNA damage, (5m)CpG deamination, and APOBEC-mediated
cytosine mutation were constructed. MTMMs were mapped to
the individual tumor SAMMs to find mutational mechanisms
corresponding to each overall mutational pattern. It was found
that �90% of all tumor genomes had a nearest neighbor from
the same tissue of origin. When a distance-dependent six-
nearest neighbor classifier was used, �10% of the SAMMs had
an undetermined tissue of origin, whereas 92% of the remaining
SAMMs were assigned to the correct tissue of origin. Thus, al-
though tumors from different tissues may have similar muta-
tion patterns, their SAMMs often display signatures that are
characteristic of specific tissues [98].

Table 2. Examples of mutable motifs

Test system/mutagen/spectrum Mutable motif Comments Reference

Spontaneous G:C!A:T mutations in
human genome

CG May result from the spontaneous
deamination of 5-methylcytosine

[77]

Somatic mutations in immunoglobulin genes RGYW
WA

AGYW is more mutable compared with GGYW [27, 30]
TA is more mutable compared with AA

AID WRC In vitro DNA damages [88]
Somatic mutations in many cancers WRCG Hybrid motif (WRCþCG) [32]
APOBEC1 TCW Expression of rat gene in yeast [58]
APOBEC3G CCR Expression of human gene in yeast [58]
APOBEC3A/B TCW Expression of human gene in yeast and

analysis of mutations in cancer genomes
[27, 30]

Hotspots of errors produced by human DNA pol g WA In vitro gap filling [40]
Pyrimidine (6-4) pyrimidone photoproducts YTCA In vitro DNA damages [83]
Cyclobutane dimers photoproducts YTT In vitro DNA damages [83]
Insertions/deletions in human genes YYYTG Analysis of human disease genes [87]

Note: Hotspot positions are underlined; for some motifs, the exact location of hotspot positions cannot be defined. The standard nomenclature for consensus se-

quences: R¼A/G, Y¼T/C, M¼A/C, K¼G/T, W¼A/T, S¼G/C, B¼T/C/G, D¼A/T/G, H¼A/T/C, V¼A/G/C and N¼A/T/G/C.

Table 3. Putative DNA pol g mutation hotspots in lacZ

Sequence Hotspot
position

Type of
changes

Number of
mutations

CAATT 3 A!G,T,C 15,1,1
TTATC 14 A!G,C,T 14,1,1
GTTAT 15 T!G,A 10,5
AAATT 20 A!G,T 11,1
GAAAT 21 A!G,T 16,2
ATAGC 38 A!G,T,C 9,2,1
CATAG 39 T!G,A,C 9,9,2
TCATG 46 A!G,T 13,1
GTAAT 50 A!G,T 16,4
GAATT 56 A!G 17
AAACG 70 A!G,T 18,3
GTAAA 73 A!G,T 14,1
CAACG 77 T!C,G 12
CGACG 80 A!G,T 11,2
WA Consensus

Note: Hotspot positions are underlined. The mutational spectrum shown in

Figure 1 was converted to the complementary orientation.
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Mutational signature is an important concept for describing
individual mutagenic factors and for quantifying their contribu-
tion to mutational spectra in cancer samples. Several computa-
tional methods have been proposed for solving the X � WH
decomposition problem. The original method of NMF, minimiz-
ing the Frobenius norm of decomposition, is available as
a Wellcome Trust Sanger Institute Mutational Signature
Framework in the form of a MATLAB package [16].
SomaticSignatures is an R Bioconductor package implementing
NMF and PCA approaches to signature decomposition from
mutational data [99]. The DeconstructSigs R package applies an
alternative approach—multiple linear regression models to the
reconstruction of signatures [100]. The MutSpec package

integrates NMF decomposition into a Galaxy toolbox, enabling
genomic data analysis pipelines [101].

A recently developed resource, MutaGene [102], provides a
set of tools that allows the exploration of this heterogeneity in
terms of the underlying mutagenic processes. The processes are
defined based on the concept of mutational signatures obtained
by nonsmooth NMF decomposition from available cancer sam-
ples. MutaGene can analyze any set of mutations obtained, for
instance, from sequencing tumor samples, and identifies the
underlying mutagenic processes and the most likely cancer
type and subtype for a given sample. Finally, MutaGene applies
mutational profiles and signatures as background statistical
models for calculating the expected rates of context-dependent
mutations for each nucleotide and amino acid in a given gene
or corresponding protein, helping to find site-specific cancer-
driving events.

An example of a mutational signature is shown in the
Figure 3. This signature (Signature 9; http://cancer.sanger.ac.uk/
cosmic/signatures) has been found in chronic lymphocytic leu-
kemia and malignant B-cell lymphoma genomes. Signature 9 is
characterized by a pattern of mutations that has been attributed
to DNA pol g, which has been implicated with the activity of
AID during SHM.

The number of mutational signatures defines the dimen-
sionality of the problem. It is an important parameter because
signatures are interpreted as individual mutational processes.
An optimal number of signatures are hard to find because a
large number of signatures may result in over-fitting, whereas a
small number of signatures may result in inaccurate decompos-
ition. A number of approaches have been implemented, for ex-
ample by Tan and Fevotte [96] in a Bayesian NMF algorithm,
and cophenetic correlation inspired by Brunet et al. [95]. To this
end, finding a true number of mutagenic processes operating in
a set of cancer samples remains an open research problem.
Although decomposition into signatures is useful for interpret-
ing the mutagenic processes, there are certain limitations. One
of them is the heuristic nature of associations between muta-
tional signatures and molecular mechanisms of mutations.
For example, the pol g signature in COSMIC (Figure 3; the
Signature 9, http://cancer.sanger.ac.uk/cosmic/signatures) has a
higher frequency of T:A>G:C transversions compared with
T:A>C:G transitions, although such a pattern has not been

Figure 3. The DNA pol g mutational signature (Signature 9, http://cancer.sanger.ac.uk/cosmic/signatures).

Figure 2. Statistical analysis of mutable motifs in sites of somatic mutations and

surrounding regions. The excess of mutations in motifs was calculated using

the ratio Fm/Fn, where Fm is the fraction of somatic mutations observed in a

given mutable motif (the number of mutated motifs divided by the number of

mutations), and Fn is the frequency of the motif in the DNA neighborhood of

somatic mutations (the number of motif positions divided by the total number

of all un-mutated positions in the 120 bp window).
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observed either in vitro or in vivo [27]. In addition, this pol g mu-
tational signature was not found in follicular lymphoma, al-
though this cancer is associated with the activity of AID [32].

Examples of cancer studies

There are several examples of the successful application of
mutable motifs and mutational signatures. As discussed above,
several mutations are required for cancer development, and
genome sequencing has revealed that many cancers, including
breast cancer, have somatic mutational spectra that are domi-
nated by C:G>T:A transitions [40, 103]. Roberts et al. [40] and
Burns et al. [103] have shown that APOBEC-mediated mutagen-
esis is pervasive throughout cancer genomes and correlates
with APOBEC mRNA levels. Interestingly, APOBEC3B mRNA is
upregulated in most primary breast tumors and breast cancer
cell lines. Cancer cells that express high levels of APOBEC3B ex-
hibit twice as many mutations as those that express low levels
and are more likely to have mutations in TP53 [103]. Mutation
clusters in whole-genome and exome data sets conformed to
the stringent criteria indicative of an APOBEC mutation pattern
(examples of APOBEC3A and APOBEC3B mutation patterns [56]
are shown in the Figure 4). Applying these criteria to somatic
mutations from 14 cancer types showed a significant presence
of the APOBEC mutation pattern in bladder, cervical, breast,
head and neck and lung cancers, reaching 68% of all mutations
in some samples [40]. Within breast cancer, the HER2-enriched
subtype was clearly enriched for tumors with the APOBEC
mutation pattern, suggesting that this type of mutagenesis is
functionally linked with cancer development. The APOBEC mu-
tation pattern also extended to cancer-associated genes, imply-
ing that ubiquitous APOBEC-mediated mutagenesis is
carcinogenesis [40].

Tobacco smoking has been claimed to be associated with an
increased risk of at least 17 classes of human cancer.
Alexandrov et al. [41] analyzed somatic mutations and DNA
methylation in 5243 cancers of those types for which tobacco
smoking is associated with an elevated risk [41]. Smoking was
found to be associated with an increased mutational burden of
multiple distinct mutational signatures that contribute to differ-
ent extents in different cancers. One of these signatures, mainly
but not exclusively found in cancers derived from tissues dir-
ectly exposed to tobacco smoke, was attributed to misreplica-
tion of DNA damage caused by tobacco carcinogens. Other
signatures probably reflect the indirect activation of DNA edit-
ing by APOBEC cytidine deaminases and of an endogenous

clock-like mutational process. These results are consistent with
the proposition that smoking increases cancer risk by increas-
ing the somatic mutation load, although direct evidence for this
mechanism is still lacking in smoking-related cancer types [41].

Follicular lymphoma is an uncurable cancer characterized
by the progressive severity of relapses. The sequence context
specificity of mutations in the B cells from a large cohort of fol-
licular lymphoma patients has been analyzed [32]. A substantial
excess of mutations was found within a novel hybrid nucleotide
motif: the signature of SHM enzyme, AID, which overlaps CG di-
nucleotides. The prevalence of this hybrid mutational signature
in many other types of human cancer was observed, suggesting
that AID-mediated, CpG methylation-dependent mutagenesis is
a common feature of human tumorigenesis [32]. Analysis of the
association between the methylation ratio and somatic muta-
tions in WRCG/CGYW mutable motifs identified a moderate but
significant (P< 0.0001) decrease of methylation in the WRCG/
CGYW mutation context [32]. Figure 5 shows that the major dif-
ference lies within the range of methylation ratios (% of methy-
lated cytosines) of 80 and 100. This finding implies that in
follicular lymphoma, the SHM machinery acts at genomic sites
containing methylated cytosine. It is consistent with the hy-
pothesis that AID-dependent demethylation occurs preferen-
tially in WRCG/CGYW mutable motifs, so that mutations
are one of the outcomes of the multistep demethylation
process [32].

Smith et al. [104] identified a novel signature of accelerated
somatic evolution (SASE) marked by a significant excess of clus-
tered somatic mutations localized in a genomic locus, and pri-
oritized those loci that carried the signature in multiple cancer
patients. In a pan-cancer analysis of 906 samples from 12 tumor
types, SASE was detected in the promoters of several genes,
including known cancer genes such as MYC, BCL2, RBM5 and
WWOX. Nucleotide substitution patterns consistent with oxida-
tive DNA damage and APOBEC-related local SHM appeared to
contribute to this signature in selected gene promoters
(e.g. MYC) [104].

Clustering of mutations

Clustering of mutations is characteristic of many DNA-modify-
ing enzymes [105] and may be used as an additional source of
information to provide evidential support for the involvement
of certain enzymes in generating somatic alterations in cancer.
It should be noted that clustering could be because of certain
structural or functional features of genomes (e.g. transcription
start sites) [57, 106]. Several aspects of a mutational spectrum,
including the frequency of nucleotide substitutions, clustering
of mutations and hotspots and periodicity of mutational pat-
terns, can be used to understand molecular mechanisms of mu-
tagenesis. Some statistical approaches for analyzing the
clustering of mutations are described in [40, 55, 107–109].

In theory, any two mutations that are not distributed ran-
domly can be considered to be clustered [52]. In practice, how-
ever, certain thresholds should be used to define cluster
borders. Sometimes, when the clusters are prominent, this is ra-
ther easy. For example, the sequencing of genomes of certain
tumors points to the mechanism where extensive deamination
of resected DNA ends by APOBEC enzymes causes formation of
strong mutational clusters (termed ‘kataegis’) [110]. Similarly,
single-stranded DNA (ssDNA)-specific mutagens cause strand-
specific mutation clustering in yeast on DSB repair via homolo-
gous recombination [52] or on induction of break-induced

Figure 4. APOBEC3A (A) and APOBEC3B-induced (B) mutation patterns in yeast

genomes [56] shown as a logo (weblogo.berkeley.edu). The Position 6 is the mut-

able position.
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replication [111]. An example of a clear cluster is shown sche-
matically on Figure 6A.

In other cases where mutation numbers are low and/or their
densities are either low or high, both the determination of
whether clustering is present and the definition of cluster bor-
ders require formal mathematical approaches. For example, in
a recent study [57], clusters associated with ssDNA vulnerable
during transcription initiation have been found. For the most
sensitive promoters, every genome contains strong and clear
mutational clustering (Figure 6B and D), whereas for the more
weakly expressed and better protected genes, clusters can be
detected only when combined mutational data sets have been
studied. In this case, clusters are defined not in a genetic but ra-
ther in a functional way, and depict the profiles of genomic
ssDNA vulnerability to specific mutagens (Figure 6C and E).

Large-scale DNA rearrangements, gene
expression data and DNA methylation

A variety of large-scale recombination events (duplications, de-
letions, translocations and inversions) are a characteristic fea-
ture of many cancers [112–114]. Some of these events are
recurrent and are considered to be signatures of specific cancer
subtypes [112, 113]. One well-known example is the BCL2 gene
that is involved in translocation with immunoglobulin genes.
This translocation is a characteristic feature of follicular lymph-
oma [115]. Previously, we found a signature of pol g (WA/TW,
W¼A/T) in follicular lymphoma, which was significant in 50 un-
translated region (UTR) regions (P-value¼ 0.01) [32]. However, a
detailed analysis of pol g mutability suggested that a substan-
tial fraction (24%) of mutated 50 UTR WA/TW motifs occurred
within the BCL2 gene (19 of 28 mutations at A:T bases). After we
removed somatic mutations that were identified within the
BCL2 50 UTR region (near the translocation breakpoint), the cor-
relation became insignificant (P-value¼ 0.11, 60 mutations in
WA/TW motifs of 116 mutations at A:T bases) [32]. This is an ex-
ample of how a single translocation event is able to bias the re-
sults of the whole-exome analysis; therefore, such events
cannot be ignored.

The expression of genes potentially associated with mutable
motifs is also used as an additional feature to delineate proteins

involved in mutagenesis as we discussed in the chapter
‘Examples of cancer studies’. However, these data are not al-
ways a useful source of information. For example, no correl-
ation between AID mutagenesis and RNA sequencing (RNAseq)
expression of AID was found [32]. There have been numerous
attempts to use expression data for the analysis of cancer. For
example, microarrays have revolutionized breast cancer re-
search by generating various cancer diagnostic and prognostic
signatures. Clinically, breast cancer is a highly heterogeneous
disease, and gene expression profiling has potentiated the sub-
classification of tumors into five distinct ‘intrinsic’ subclasses
(luminal A, luminal B, ERBB2, basal and normal-like), thereby
helping to explain why patients with histologically similar
tumors often show different outcomes and responses to ther-
apy [116–119, 120]. Currently, several breast cancer prognostic
assays are on the market based on microarray and reverse tran-
scription polymerase chain reaction technologies (Oncotype
DXTM, MammaPrintVR , the H/I ratio test) and their clinical valid-
ity and utility extensively studied [121]. MammaPrintVR , the first
prognostic microarray-based test, received its original FDA ap-
proval in 2007 and additional approval for testing in fixed tis-
sues in 2015. Multiple additional expression-based classifiers
have been developed [122, 123], and the PAM50 classifier having
been translated into a clinical assay (ProsignaTM) [124]. Recently,
the Personalized Regimen Selection strategy (uses both genetic
and clinical variables) was shown to significantly increase re-
sponse rates for breast cancer patients, especially those with
HER2- and ER-negative tumors [125]. In addition to PCR- and
microarray-based techniques, the utility of RNAseq-based
methods for a variety of breast cancer signatures was demon-
strated [121].

Epigenetic modifications, including DNA methylation, play
an important role in many gene regulatory processes.
Methylation involves two nucleotides, cytosine and adenine,
and in humans, it is predominantly found as 5-methylcytosine
(5mC) in CpG dinucleotides. CpG constitutes a mutation hotspot
in the human genome, both in the germ line and in the soma.
This is because of methylation-mediated deamination of 5mC:
while cytosine spontaneously deaminates to uracil (which is ef-
ficiently recognized as a non-DNA base and removed by uracil-
DNA glycosylase), the spontaneous deamination of 5mC yields
thymine, thereby creating G•T mismatches whose removal by
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methyl-CpG-binding domain protein 4 and/or thymine DNA gly-
cosylase followed by base excision repair is inherently less effi-
cient [126]. Recently developed high-throughput techniques
such as bisulfite sequencing and DNA methylation arrays have
provided data on the methylation status of individual cytosines;
these data are deposited in international consortia such as ICGC
and TCGA. The patterns of DNA methylation may change as the
cell grows and differentiates, and aberrant DNA methylation
patterns have been observed in many cancers [127]. In normal
tissues, promoter-associated CpG islands remain unmethy-
lated, whereas hundreds of CpG islands in tumors acquire DNA
methylation. In the late 1990s, the CpG island methylator
phenotype was identified in colorectal cancer [128]. Later, stud-
ies have shown that there could be subgroups with similar
methylomes even within one cancer type; thus, four different

subgroups have been identified in colorectal cancer [129]. At the
same time, certain similarities have been detected between the
methylomes of different cancer types. In this respect, colorectal,
gastric and endometrial cancers have been found to belong to
the highly methylated subgroup that is associated with tumors
with microsatellite instability and hypermethylation of the
MLH1 promoter [130], whereas solid human epithelial tumors
and cancer cell lines revealed commonalities and tissue-
specific features of the CpG island methylator phenotype [131].

Cancer driver and passenger mutations

A driver is a mutation that directly or indirectly confers a select-
ive advantage on the cell in which it occurs, while a passenger
is a mutation that exerts no selective growth advantage on the

Figure 6. Types of mutational clusters. Horizontal black lines, chromosome. Mutations resulting from damage to the top and bottom DNA strands are shown as lighter

(red) and darker (blue) circles, respectively. Clusters are indicated by brackets. (A) Strong, clear cluster resulting from the action of ssDNA-specific mutagen on the re-

sected DNA during DSB repair. (B) Cluster of moderate strength with mixed types of mutations. In this case, clusters of different size can be defined based on the

threshold parameters of clustering algorithm (compare two brackets). (C) Six individual clones (e.g. cells, tumors or mutants microorganisms) are shown on top. No ap-

parent clustering is observed except for one clone where two mutations of different types are located close to each other. However, on combining all data sets, promin-

ent and likely strand-specific clustering is detected (bottom). This clustering likely represents the general susceptibility of the corresponding genomic region to the

ssDNA-specific mutagen. (D) Example of clustering of intermediate power (compare with scheme on the Panel B). This cluster is found on chromosome X of yeast mu-

tant clone induced by PmCDA1 deaminase [57]. Two clusters can be defined based on the algorithm parameters. Dark (blue) rectangles, heterozygous C>T substitu-

tions, which result from deamination of cytosine in the top DNA strand; lighter (red) rectangles, heterozygous G>A substitutions, which result from deamination of

cytosines in the bottom DNA strand. Genomic features, as well as chromosomal coordinates, are shown on top. (E) Example of cluster detected in silico by combining

mutational data from independent yeast mutant clones induced by PmCDA1 deaminase. Each individual mutant possesses only a single SNV in this genomic region.

However, merging data from several clones reveals a region of susceptibility to the mutagen. Color code and labels are as in the Panel D.
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cell in which it occurs [132]. There is a subtle difference between
a driver gene and a driver gene mutation: a driver gene harbors
driver gene mutations but may also harbor passenger gene mu-
tations. A driver mutation typically confers on a tumor only a
small growth advantage, which may be as low as a 0.4% in-
crease in the difference between cell birth and death rates [133].
More recently, Bozic et al. [134] have shown that the first, and
hence most abundant, passenger mutations are influenced by
both the mutation rate and by the death–birth ratio of the can-
cer cells.

It should be appreciated that whereas passenger mutations
cannot by definition exert a selective growth advantage, they
are not necessarily neutral. Indeed, many are deleterious in
terms of their effect on cellular proliferation and cancer pro-
gression [135, 136]. It should also be appreciated that while the
damaging effect of a nonsynonymous passenger mutation is of
the order of 100 times smaller than the effect of a driver muta-
tion, passengers are 100 times more numerous than drivers
[136]. The paucity of drivers in a sea of passenger mutations
represents a challenge to identify the former [137]. This task is
made all the more daunting by the possibility that drivers and
passengers are not discrete entities but rather lie along a con-
tinuum, which includes latent driver mutations, which ‘behave
as passengers but. . ..coupled with other emerging mutations,
drive cancer development and drug resistance’ [138]. For most
types of cancer, the genomic landscape comprises a small num-
ber of ‘mountains’ (genes altered in a high percentage of
tumors) and a much larger number of ‘hills’ (genes that are
altered much less frequently; see [139]).

Recently, it was suggested that only a small number of driver
mutations are required for progression of normal tissues into
tumor [72]. A high proportion of cancer driver events occur in
noncoding regions, and a similarly large fraction affects
protein-coding regions. Possible molecular mechanisms of mu-
tation occurrence at the DNA level have been described in previ-
ous sections, whereas the effects of cancer missense mutations
on proteins have been reliably established only in a few cases.
Establishing such effects on protein activity, stability, dynamics
and binding would certainly facilitate our understanding of
driver events in cancer. Several distinct properties are charac-
teristic of cancer-associated proteins: tumor suppressors in can-
cer frequently harbor destabilizing mutations that preferably
occur within the core of the protein; the enhanced activity of
oncogenes is often linked with mutations at functional sites
[140]; cancer mutations cluster in three-dimensional space [141,
142] in both oncogenes and tumor suppressors [141]; cancer
missense mutations largely affect protein-binding interfaces
[143–145]; and the transforming effect of mutations is directly
proportional to their frequency in cancer samples [146, 147].

Different in silico approaches have been developed that aim
to detect driver genes or sites that acquire significantly more
mutations than expected from the background mutational
models. An unbiased testing and comparison of these methods
is an issue because methods are trained on all available experi-
mental data sets of cancer mutations and their transforming ef-
fects, and such data sets are scarce [148]. There are several
methods that can distinguish cancer-associated mutations
from neutral polymorphisms, but there is no existing method
that can accurately distinguish driver mutations from passen-
ger mutations.

In general, the somatic evolution of cancers is expected to be
characterized by weak purifying selection in most genes and
substantial positive selection in some ‘cancer’ genes that are
likely to contain driver mutations [149, 150]. The latter

possibility is of particular interest because the positive selection
of somatic mutations in cancers flags up that the change in
function of the respective genes is relevant for tumorigenesis,
leading to the recognition of previously undetected oncogenes
and other genes associated with cancer. We shall discuss this in
more detail in the next chapter.

There have been numerous attempts to build a census of
human cancer genes [149, 151, 152]. Back in 2004, Futreal et al.
[151] published a ‘Census of human cancer genes’, which aimed
to list all genes that are causally implicated in tumorigenesis.
This Census has been kept up to date and currently includes
602 entries (http://cancer.sanger.ac.uk/census/). This implies
that >2% of all human genes are implicated via mutation in
cancer. Of these, �90% have somatic mutations in cancer, 20%
have germ line mutations that predispose to cancer and 10%
harbor both somatic and germ line mutations. A second re-
source, the Network of Cancer Genes (http://ncg.kcl.ac.uk/), con-
tains 1053 ‘cancer genes’ whose possible involvement in cancer
has been inferred by statistical means. An important direction
for this avenue of research has been the development of pre-
dictive models for cancer-associated genes that could accelerate
their identification, although ubiquitously overexpressed genes
could be marked as nonspecific cancer-associated genes when
delineating genes that are specific to certain types of cancer
[153]. The number of genes recognized as being cancer-
associated is likely to increase as new techniques are devised to
search for them [154, 155].

One important direction of research lies with attempts to
identify the underlying mechanisms of driver mutation gener-
ation. For example, analysis of the APOBEC3A/B signature asso-
ciated with driver mutations suggested that APOBEC signature
mutations themselves contribute to carcinogenesis in samples
with a strong mutation pattern associated with ABOBEC3A/B
[40]. Furthermore, many of the APOBEC3A/B signature muta-
tions that are likely to be driver mutations occurred in genes
that are highly mutated in various databases and are also pre-
sent in the Census of human cancer genes [40]. In lung cancer,
despite sustained carcinogen exposure, subclonal mutations
showed a relatively lower burden of smoking-related mutations,
accompanied by an increase in APOBEC-associated mutations,
suggesting that mutagenic processes also evolve over the
course of tumor development and that APOBEC-mediated mu-
tagenic processes play a role in subclonal genetic heterogeneity
in some tumors [156].

Selectionist and neutralist models of evolution
in cancer

There is a widely held presumption that subclone dynamics in
human cancers are dominated by strong selection, but this may
not be invariably true. Thus, for example, Williams et al. [157]
found that subclonal mutant allele frequencies of 323 of 904
cancers of 14 types followed a simple power-law distribution
predicted by neutral growth. As the tumor grows, a large num-
ber of cell lineages are formed, and intratumoral heterogeneity
increases, while the allele frequency of the new heterogeneous
mutations rapidly decreases because of expansion. Thus, after
malignant transformation, individual subclones with distinct
mutational patterns grow at similar rates, coexisting with one
another within the tumor for long periods of time, as a conse-
quence of the lack of stringent selection. In malignancies identi-
fied as evolving neutrally, all clonal selection appears to
have occurred before the onset of cancer growth rather than in
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later-arising subclones, resulting in numerous passenger muta-
tions that account for the intratumoral heterogeneity.

These data concur with the ‘big bang’ model of cancer
growth of Sottoriva et al. [158]. This model of colorectal cancer
growth envisages tumors growing predominantly as a single ex-
pansion producing numerous intermixed subclones that are not
subject to stringent selection. On the assumption of a neutralist
model of tumor growth, cancer sequencing data can be used to
measure, in each individual, both the in vivo mutation rate and
the order and timing of mutations. Uchi et al. [159] noted that
known driver mutations were observed frequently among early
acquired mutations in colorectal cancer but rarely among the
late-acquired mutations. Little evidence was found to support
the view that selection had shaped the intratumoral heterogen-
eity, which was much more likely to have been generated by
neutral evolution. The extremely high level of genetic diversity
evident in a single hepatocellular carcinoma (>100 million cod-
ing region mutations estimated in the entire tumor) has pro-
vided further evidence for the occurrence of ‘non-Darwinian
cell evolution’ in cancer [160]. A total of 286 regions of this
tumor were sequenced, and the lack of any evidence for selec-
tion was consistent with a model of big bang-like growth.

Gao et al. [161] investigated copy number evolution in pa-
tients with triple-negative breast cancer. They sequenced 1000
single cells from tumors in 12 patients and identified one to
three major clonal subpopulations in each tumor that shared a
common evolutionary lineage. For each tumor, these authors
also identified a minor subpopulation of nonclonal cells.
Phylogenetic analysis and mathematical modeling showed that
these data were hard to explain by the gradual accumulation of
copy number events. These data therefore challenge the para-
digm of gradual evolution, showing that the majority of copy
number aberrations were acquired at the earliest stages of
tumor evolution, in short punctuated bursts, followed by stable
clonal expansions to form the tumor mass. Thus, at least in
some cases, a saltationist model of evolution may be relevant to
cancer [162]. A compromise between a gradualist model and sa-
lutatory evolution may well be found in the application of punc-
tuated equilibrium to cancer evolution—periods of stasis
punctuated by sudden and dramatic changes [163].

We may conclude that natural selection would not be ex-
pected to bias/change mutational patterns to a large extent, and
such effects are anticipated to be negligible. Periods of sudden
and dramatic changes [163] might be associated with bursts of
mutations introduced by error-prone mutational mechanisms,
processes reflected in mutational signatures and by mutable
motifs; this is likely to be a promising avenue for future
research.

Concluding remarks

There are numerous examples of the successful application of
mutational signatures and mutable motifs to studies of molecu-
lar mechanisms of mutagenesis. The level of success achieved
in the context of the AID/APOBEC protein family certainly sup-
ports the notion that mutable motifs and mutational signatures
are useful tools with which to study molecular mechanisms of
mutations in cancer. Such an approach is likely to be helpful in
understanding the biology, initiation and progression of human
cancers. One potential caveat, however, is how to distinguish
artifactual DNA lesions from the bona fide somatic mutations
that occurred in the tumor [75]. This important issue requires
further investigation.

There is evidence for the presence of circulating tumor
DNA (ctDNA) in early cancers [164, 165]. However, the fraction
of tumors that shed detectable levels of ctDNA, by tumor stage
and type, is not known [165]. The studies to date have small
numbers of samples and use a variety of measurement tech-
niques that are often not comparable [164, 165]. In general, the
potential for mutational signatures and mutable motifs to pro-
vide new cancer biomarkers or drug targets is unclear. For ex-
ample, AID-related WRC/GYW and WRCG/CGYW mutable
motifs for 22 individual follicular lymphoma patient exomes
were analyzed (Supplementary Table S3 from Rogozin et al.
[32]). A significant excess of mutations in both motifs was
found for 13 patients [32]. This finding suggests that the muta-
tional processes associated with AID are active in follicular
lymphoma to an extent detectable with sensitive statistical
tests in samples with limited numbers of mutations; however,
the sensitivity of this test is not high. This notwithstanding, in
combination with other mutational signatures, methylation
patterns and other biomarkers, this approach may have
some value.

There is much room for improvement in our ascertainment
of mutable motifs and mutational signatures. Theoretically,
various computational approaches can be used to analyze
aligned sequences of mutation hotspots. Many techniques
have been developed for the analysis of functional signals
including information content, weight matrices, perceptron, k-
tuple frequencies, discriminant analysis, hidden Markov mod-
els, linguistic approaches and neural network models. These
methods are well established and have been tested on
different types of data, but all of these methods require large
data sets.

It should be noted that the analysis of mutations is rather a
classification problem than discriminant analysis (commonly
used in bioinformatics, e.g. analysis of splicing signals) with
well-defined training (learning) and control (test) sets. This ne-
cessarily imposes certain restrictions on the interpretation of
results, and conclusions should still be regarded as hypotheses/
observations rather than proven facts; in many cases, such con-
clusions will require further experimental validation. However,
all attempts to assign mutational signatures to known human
carcinogenic exposures or endogenous mechanisms of muta-
genesis [79] should still be appreciated for what they are: the
first tentative attempts to found a vital new branch of enquiry
in cancer genomics. Such studies will certainly add significantly
to our knowledge of mutagenesis in human cancers.

Key Points

• Cancer genomes are highly enriched with mutations
of different kinds.

• The DNA sequence context and distribution of muta-
tions represent the signatures of mutational processes
that can be deconvoluted into individual components.

• These mutational signatures, supplemented by mut-
able motifs (a wider descriptor of mutation context),
represent the footprints of interactions between DNA,
mutagens and the enzymes of the repair/replication/
modification pathways.

• It has become clear that it is possible to acquire an
understanding of the underlying mutational mechan-
isms in cancer by indirectly analyzing DNA sequences
of whole genomes of tumor cells.
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