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ABSTRACT: Many biologically important proteins bind nonspecifically, and often cooperatively, to single- 
or double-stranded nucleic acid lattices in discharging their physiological functions. This binding can generally 
be described in thermodynamic terms by three parameters: n,  the binding site size; K ,  the intrinsic binding 
constant; w ,  the binding cooperativity parameter. The experimental determination of these parameters often 
appears to be straightforward but can be fraught with conceptual and methodological difficulties that may 
not be readily apparent. In this paper we describe and analyze a number of approaches that can be used 
to measure these protein-nucleic acid interaction parameters and illustrate these methods with experiments 
on the binding of T4-coded gene 32 (single-stranded D N A  binding) protein to various nucleic acid lattices. 
We consider the following procedures: (i) the titration of a fixed amount of lattice (nucleic acid) with added 
ligand (protein); (ii) the titration of a fixed amount of ligand with added lattice; (iii) the determination 
of ligand binding affinities at  very low levels of lattice saturation; (iv) the analysis of ligand cluster size 
distribution on the lattice; (v) the analysis of ligand binding to lattices of finite length. The applicability 
and limitations of each approach are considered and discussed, and potential pitfalls are  explicitly pointed 
out. 

T e  nonspecific binding of proteins to single- or double- 
stranded nucleic acid lattices is a central feature of many 
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functional and regulatory biological processes. Theoretically, 
the problem can be viewed as the binding of large ligands to 
a one-dimensional lattice, where each ligand interacts with 
more than one lattice unit (nucleotide residue or base pair), 
and thus also covers more than one potential ligand binding 
site (Le., ligand binding is of the “overlap” type). Overlap 
binding of ligands to a one-dimensional lattice complicates the 
analysis of titration curves because the binding sites on the 
lattice are not titrated independently. Because of overlap, the 
number of free lattice binding sites occluded per binding event 
decreases with increasing saturation of the lattice. As a 
consequence, overlap binding is effectively “negatively 
cooperative”, and it becomes progressively more unfavorable 
to bind additional ligands as lattice saturation is approached. 
In addition, protein binding to nucleic acid lattices may also 
be (and generally is) positively cooperative, in that the binding 
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of an additional protein adjacent to one that is already bound 
is favored over binding to an isolated site. This antagonizes 
the overlap effect, promotes the clustering of bound ligands, 
and facilitates lattice saturation. [For a complete theoretical 
discussion of overlap and cooperative binding to a linear lattice, 
see McGhee & von Hippel (1974).] 

The effects of nonspecific protein-nucleic acid interactions 
on biological regulatory mechanisms are widespread and can 
be illustrated by the following examples. The processes of 
DNA replication, recombination, and repair require the 
binding of single-stranded DNA binding proteins to transiently 
single-stranded sequences formed as intermediates in these 
processes [for a review, see Kowalczykowski et al. (1981a)l; 
binding is nonspecific and often cooperative to force saturation 
of the lattice. Repressors, RNA polymerase, and other genome 
regulatory proteins use nonspecific binding to random se- 
quences on the chromosome as an  intermediate step in the 
location of specific DNA regulatory targets such as operators 
and promoters (Berg et al., 1982) and to provide modulation 
of the net affinity for the specific binding site through com- 
petitive binding (von Hippel et al., 1974; Lin & Riggs, 1975). 
Nonspecific protein-nucleic acid interactions have also been 
utilized in controlling the translation of messenger R N A  
through the cooperative binding of the regulator protein to the 
ribosome binding site on the R N A  [see von Hippel et al. 
(1982)l. Analysis of the above systems (as well as other 
functional and regulatory systems involved in gene expression) 
has shown that quantitative measures of nonspecific protein- 
nucleic acid binding parameters are required to interpret (and 
to discriminate) competing molecular biological models of such 
processes, since such models can often be distinguished only 
in physical chemical terms. 

A variety of mathematical approaches have been taken to 
solving the problem of nonspecific binding of large ligands to 
one-dimensional lattices. Latt and Sober (1967) used both 
a combinatorial method and the method of sequence-gener- 
ating functions to investigate lattice binding of noninteracting 
ligands. Crothers (1968) and Schwarz (1970) used a matrix 
method to describe both the noninteractive and the interactive 
(cooperative) binding of ligands to nucleic acid lattices. Za- 
sadetlev et al. (197 1) developed a combinatorial procedure for 
the same purposes, while Schellman (1974) has applied the 
method of sequence-generating functions to the solution of this 
problem. McGhee and von Hippel (1 974) used a conditional 
probability approach and were able to obtain solutions in closed 
analytic form for both cooperative and noncooperative binding. 

Despite this multiplicity of theoretical approaches, the 
problems associated with applying these theories to real sys- 
tems have often led to difficulty and confusion. In our labo- 
ratories, over a period of years, we have been developing a 
variety of experimental approaches to these protein-nucleic 
acid interaction systems and have been trying to sort out the 
interpretive complications associated with each. Some of these 
approaches are summarized here. For convenience, we have 
formulated our discussion in the context of the McGhee-von 
Hippel version of the binding theory, which has the advantage 
of easy computational manipulation. However, this presen- 
tation could easily be recast in terms of any of the other 
theoretical methods listed above [e.g., see Schwarz & Wa- 
tanabe (1983) and Watanabe & Schwarz (1983)l. 

The simple model used in all these theories, as well as in 
this paper, describes the binding of proteins to nucleic acids 
in terms of three thermodynamic parameters: n, the binding 
site size of the protein (in units of nucleotide residues or base 
pairs); K,  the intrinsic binding constant (in M-’);’ w ,  the co- 
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FIGURE 1: Definitions of the thermodynamic parameters that describe 
the interaction of a protein with a nucleic acid lattice. Each arrowhead 
represents a lattice site (Le., a nucleotide residue), and the illustrated 
protein ligand covers three such sites (n = 3). K (M-I) is the intrinsic 
association constant for protein binding to the lattice at an isolated 
site, and w (dimensionless) represents the cooperativity of binding. 
w is defined as the equilibrium constant for moving a protein from 
a given isolated site to a given contiguous binding site. Thus, K u  is 
the net binding constant per contiguously bound protein molecule. 
If contiguous binding is favored, w > 1, if the binding is noncooperative, 
w = 1, and if the binding is negatively cooperative, w < 1. 

operativity parameter (unitless) that specifies the relative 
affinity of an incoming ligand for a contiguous, as opposed 
to an  isolated, binding site. These parameters are illustrated 
in Figure 1. Obviously a description in terms of single values 
of n, K ,  and w provides an oversimplified model of many real 
biological systems. Even the paradigm system (T4 gene 32 
protein binding to single-stranded DNA) fails to fit it exactly. 
Possible complications include heterogeneous binding to com- 
positionally different nucleic acid sequences (more than one 
value of K ) ,  different modes of binding of the protein to the 
nucleic acid lattice (more than one value of n), and cooperative 
interactions between ligands beyond the nearest-neighbor level 
(more than one value of w). Furthermore, most of the theo- 
retical models (including McGhee-von Hippel) were developed 
to work with long (effectively infinite) lattices, while many 
real biological systems involve binding to short nucleic acid 
lattices. Theoretical ways of handling the finite lattice problem 
have been developed by Epstein (1978) and by J. A. Schellman 
(unpublished results); some experimental consequences of finite 
lattice binding are discussed in this paper. 

The descriptive limitations of the model we use should be 
clearly borne in mind. However, the “open-endedness” of 
assigning more detailed and specific interaction parameters 
to models of real biological systems, plus the errors involved 
in real measurements, generally limits us to the use of the 
simple model and the three thermodynamic parameters defined 
above. The determination and manipulation of these param- 
eters is described in what follows. Knowing these parameters 
for a given system is generally useful in itself, and obviously 
they can be further refined or subdivided as additional 
knowledge of the system a t  issue is gathered by other tech- 
niques. 

The units of K ,  like those of n, can be expressed either as nucleotide 
residues or as base pairs. The former represents the obvious choice for 
the formation of the single-stranded nucleic acid-protein complexes that 
are primarily considered as examples in this paper. Either set of units 
is appropriate for the treatment of double-stranded nucleic acid-protein 
complexes, but the choice must be explicitly made and stated since the 
magnitude of the listed value of K (and of n) will depend on it. For 
additional discussion of this point, in connection wi th  E .  coli lac re- 
pressor-DNA complexes, see Butler et al. (1977). 
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MATERIALS AND METHODS 
The preparation and manipulation of the nucleic acids and 

proteins used in this work, as well as the details of experimental 
procedures, specific buffer systems, etc., have been described 
elsewhere (Kowalczykowski et al., 1981b; Newport et al., 1981; 
Lonberg et al., 198 1). The fluorescence titrations described 
in this paper were performed either with a Schoeffel spec- 
trofluorometer, as described by Kowalczykowski et al. (1981 b), 
or with a SLM-8000 spectrofluorometer interfaced to a 
Hewlett-Packard HP-87 computer (J. A. McSwiggen et al., 
unpublished results). Fractionated samples of poly(ribo- 
adenylic acid) [poly(rA)] were obtained from Miles Bio- 
chemical Co. 

EXPERIMENTAL APPROACHES 

Equations 
Because the equations derived by McGhee and von Hippel 

(1 974) can be written in closed form, they provide a useful 
basis for the quantitative analysis of the binding of proteins 
to nucleic acids. For noncooperative systems, we write 

n- 1 

(1) 
V - = K(l - nu) 
L 

and for cooperative systems, we write 

1 = ~ ( 1  - nu) x 
L 

1-(n+l)v+R I I*'[ 2(1 - n u )  
(2w - 1)(1 - nv) + v - R 

2(w - 1)(1 - nu) [ 
(2) 

where R = [[l - (n + l)v]* + 4 4  1 - n ~ ) ] ' / ~ ,  v is the binding 
density of the ligand on the lattice (in moles of ligand per mole 
of nucleotide residue or base pair), and L is thefree ligand 
concentration (in moles per liter). The derivation of eq 1 and 
2 assumes that ligand binding occurs on an infinite lattice. We 
use these equations throughout because of their ease of in- 
terpretation and evaluation. In a later section, we examine 
the limitations for real systems that result from the infinite 
lattice assumption. 

Titration of Lattice with Ligand 
The titration of a fixed amount of lattice with added ligand 

is probably the most direct and commonly used method of 
determining the thermodynamic parameters of a ligand-lattice 
(protein-nucleic acid) interaction. Typically, some lattice- 
dependent spectroscopic signal, reflecting a change in a lattice 
property that varies linearly with ligand binding, is monitored 
as a function of total ligand concentration. Less commonly, 
a ligand-based signal that is perturbed by the binding inter- 
action is used, and the change in this signal is used to monitor 
the progressive saturation of the lattice. For our measurements 
of gene 32 protein binding, changes in the UV absorbance, 
circular dichroism, or fluorescence of the nucleic acid or of 
an appropriate nucleic acid derivative have been monitored 
as protein is added; alternatively, the deviation from a linear 
increase of the intrinsic fluorescence of the protein (due to 
quenching of the protein fluorescence in the bound state) as 
it is added to a lattice-containing solution may be followed [see 
Alma et al. (1  983) for an example of this approach]. 

The result of a titration of lattice with ligand generally 
resembles the family of curves shown in Figure 2. In  this 
figure we present model titration curves, which have been 
generated with eq 1 and 2, for noncooperatively and cooper- 
atively binding ligands. The total apparent affinity (i.e., the 

0 
0 I 2 3 4 

Free Ligand Concentration ( M  x IO7) 

0 I 2 3 4 

Total Ligond Concentration ( M  x IO7) 

FIGURE 2: (a) Fractional lattice saturation vs.free ligand concentration 
for various values of K and w ;  the product of K and w has been held 
constant at 1 X lo7 M-'. Values of w are indicated in the figure. The 
site size (n) is 10, and the concentration of lattice is 0. (b) Plot identical 
with (a), but the concentration of lattice units is M, and the x 
axis becomes total ligand concentration. 

product of K and w )  has been held constant in these calcula- 
tions, while the individual values of K and w are varied re- 
ciprocally. T$e most prominent feature of these plots is the 
progressive debelopment of the classical sigmoid titration curve 
(indicative of cooperative ligand binding) as w is increased. 
In addition, note that all of the curves with values of (L! sig- 
nificantly larger than n pass through a common value that falls 
a t  the midpoint of each titration curve. As was pointed out 
by McGhee and von Hippel (1974), the value of the free 
protein concentration at the midpoint of such binding isotherms 
approaches 1/(Kw) (for curves plotted in terms of free ligand 
concentration) for values of w that are significantly larger 
(- 10-fold) than n; the usefulness of this relationship will 
become apparent when the analysis of cooperatively binding 
systems is discussed. 

The curves of Figure 2 have been presented in two equivalent 
ways in order to illustrate the difference between plotting 
fractional saturation as a function of free ligand and of total 
ligand concentration. Although the overall shapes of the plots 
are similar, the slopes of the steeply rising portions of the 
cooperative curves differ, due solely to the fact that in Figure 
2b the total ligand concentration includes the ligand that is 
bound to the lattice. The amount of bound ligand is simply 
equal to uN, where N is the total concentration of lattice units 
(in nucleotide residues) present and v (the binding density) 
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FIGURE 3: Fractional lattice saturation vs. free ligand concentration 
for a noncooperatively binding ligand, at various values of K, with 
n = 10 and w = 1. 

is equal to the fractional saturation of the lattice (8) divided 
by the ligand binding site size (n). Thus, the two sets of curves 
in Figure 2 are related through conservation of mass by 

(3) 
where LT is the total ligand concentration and L is the free 
ligand concentration. 

Since experimental data are obtained as a function of total 
ligand concentration and the theoretical curves generated with 
eq 1 and 2 are in terms of thefree ligand concentration, it is 
necessary to convert one form to the other. However, in order 
to use eq 3 for this purpose, the binding site size (n) must be 
obtained, since 8, rather than v, is generally the preferred 
dependent variable.2 

The site size (n) for a protein can often be obtained by 
conducting a titration under stoichiometric binding conditions. 
In such a titration, an abrupt "break" is seen at the equivalence 
point, and the molar ratio of lattice residues (e.g., nucleotide 
residues or base pairs) to ligand concentration at the break 
is equal to the site size [for real examples, see Figure 3 in 
Kowalczykowski et al. (198 1 b) or Figure 1 in Newport et al. 
(1  98 l ) ] .  The problem of defining stoichiometric binding 
conditions will be addressed specifically below. However, such 
conditions can generally be defined experimentally as those 
under which there is no change in the stoichiometry at the 
equivalence point when the lattice concentration is varied over 
an approximately 1 0-fold range. Because the binding affinity 
of proteins for nucleic acids is often dependent on salt con- 
centration [see Record et al. (1978, 1981) for reviews], one 
of the easiest experimental ways to increase the binding affinity 
of the protein for the nucleic acid is to lower the salt con- 
centration. Measured site sizes, and the conditions required 
for tight binding for a number of single-stranded DNA binding 
proteins, have been summarized in Kowalczykowski et al. 

Free Ligand Concentration ( M  x IO7] 

.C, = L + vN = L + 8 N / n  

* In  principle, it is possible to determine n, K ,  and w simultaneously 
from a threeparameter fit of the experimental data to eq 1 and 2. While 
the titration curve itself should contain sufficient information to define 
these parameters uniquely, we have found that in practice an unambig- 
uous (uncorrelated) fit generally cannot be obtained, due to the experi- 
mental uncertainty of the data. Thus, we generally determine the site 
size (n) first and then fit the experimental data to trial values of K and 
w.  In this way, only a two-parameter fit is required, which (as will be 
demonstrated below) can often be reduced to a one-parameter fit under 
special circumstances. 
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(1981a). In the next sections, we discuss approaches for the 
quantitative analysis of titrations of lattice with added ligand 
for systems in which binding is nonstoichiometric and either 
noncooperative or cooperative. 

The Noncooperative Case. When w has a value close to 1, 
no sigmoidicity of the binding isotherm is observed (see Figures 
2 and 3). It is then a simple matter to model the titration 
curve if a value of n has been obtained from a stoichiometric 
binding experiment as described above. With this value of n, 
theoretical curves can be generated for various trial values of 
the binding constant ( K )  with eq 1 and compared with the 
experimental results. Alternatively, a nonlinear fitting pro- 
cedure can be used (see Appendix). It is possible also to 
determine the value of K from the midpoint of the titration 
curve (Le., at 8 = By substituting the value of n, the value 
of the free ligand concentration at the midpoint of the titration 
(LI l2 ) ,  and the value of v at the midpoint [ v ~ , ~ ,  which equals 
1/(2n)], into eq 1, we obtain 

nLIj2(1 + I/n)"-' (4) 

This equation can be used to determine exact values for Ki f  
n is known. 

If n is not known exactly, an estimate of the binding constant 
(Kapprox) can be obtained by ignoring ligand overlap, thus 
reducing eq 4 to 

Kapprox = 1 / W I / 2 )  (5) 
For example, for n = 10, eq 5 underestimates the true value 
of K approximately 2.3-fold, and for n = 5, it underestimates 
K - 2-fold. Nevertheless, eq 5 is often helpful in estimating 
trial values of K for use in curve-fitting methods (see Ap- 
pendix). 

Despite the relative simplicity of determining K from non- 
cooperative titration data once n is known, two experimental 
problems often make the analysis more difficult. The first is 
encountered when conditions cannot be found under which 
ligand binding is stoichiometric, thus precluding an inde- 
pendent determination of n. The second is related to the first, 
in that if binding is weak, or if n is large, saturation of the 
lattice cannot be achieved due to overlap problems [see 
McGhee & von Hippel (1974)] and consequently the end point 
of the titration cannot be accurately determined. In Figure 
3, we have plotted a number of curves with correspondingly 
weaker binding affinities from left to right; such data might 
be encountered in protein-nucleic acid titrations as the salt 
concentration is increased [e.g., see Lonberg et al. (1981); 
Figure 61. 

In the absence of an independent value of n, the simple 
one-parameter determination of K from a noncooperative ti- 
tration curve becomes a three-parameter problem, Le., to 
determine n, K .  and the true end point. Other than a direct 
three-parameter fit, there is no easy solution to this situation. 
We have had some limited success by using a "bootstrap" 
approach whereby the experimental end point is assumed to 
represent some value of 8 less than 1, and the curve is then 
fit to values of n and K .  These first approximations to n and 
K are then used to calculate the actual value of 0 at the end 
point, and this value is used rather than the initially assumed 
0 value to redetermine a "second-order" fit of n and K ,  and 
so forth. This procedure is used iteratively until n, K,  and 0 
no longer change (see Appendix). 

The Cooperative Case. When binding is highly cooperative 
(Le,, titration curves are noticeably sigmoidal, which indicates 
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FIGURE 4: Fractional lattice saturation vs. free ligand concentration 
for a cooperatively binding ligand with w = lo3, n = 10, and Kvarying 
as indicated. 

that w L lOn), the determination of n, K,  and w is relatively 
straightforward. First, n is determined from a stoichiometric 
titration curve as described previously. In the absence of such 
data, a good estimate of n can be obtained from the region 
of the binding curve that is steeply increasing. This portion 
of the curve basically represents the amount of protein needed 
to titrate the lattice. As can be seen in Figure 2b, that binding 
(for the most cooperative case) begins a t  - 1 X lo-' M ligand 
and reaches saturation a t  2 X M. Since the total lattice 
concentration in these model plots was 1 X 10" M, with a site 
size (n) of 10, this method of estimating bound ligand is clearly 
quite good for highly cooperative titrations. It becomes less 
accurate with smaller values of w ,  but as can be seen in Figure 
2b, it is still -50% accurate with values of w as low as lo3. 

As binding conditions become more nonstoichiometric (e.g., 
as the salt concentration is raised), three different classes of 
changes may occur: (i) K may decrease with w remaining 
constant; (ii) w may decrease with K remaining constant; (iii) 
both K and w may decrease. Class i is the most common for 
systems so far studied and has been observed with T4 gene 
32 protein (Kowalczykowski et al., 1981b; Newport et al., 
1981), fd gene 5 protein (Alma et al., 1983; Porschke & Rauh, 
1983), and Escherichia coli recA protein (Menetski & Kow- 
alczykowski, 1985); qualitatively, a family of curves such as 
that of Figure 4 is observed. Notice that the shape of each 
curve is about the same, but that they are shilted to the right 
as K decreases. For class ii, behavior such as that of Figure 
5 is observed. Here, each curve displays a "lag" region, but 
the slope of the steep portion of each decreases as w is de- 
creased. The observed behavior for class iii will be a mixture 
of classes i and ii; Le., the curves shift to the right and the 
slopes decrease. The actual extent of each effect will depend 
on which parameter is changing more rapidly with the inde- 
pendent variable that is being manipulated. 

In  order to extract values of K and w from curves such as 
these of Figures 4 and 5 ,  we take advantage of the fact (see 
above) that when w is much larger than n, the value of the 
product of K and w is defined by the value of 1/L (the re- 
ciprocal of the free ligand titration) a t  the midpoint of a 
nonstoichiometric titration (see Figure 2a). Note that if the 
binding isotherm is plotted in terms of total (rather thanfree) 
ligand concentration, then Kw is related to the total ligand 
concentration a t  the midpoint, L,,,,,, by 

1 / ( K w )  = LT,I/2 - N / ( 2 n )  (6) 

This equation is obtained by rearranging eq 3 and setting 0 

0 8  I 6  2 4  3 2  4 0  
Free Ligond Concentrotton \M x O'I 

FIGURE 5: Same as Figure 4 except that K is fixed at lo4 M-' and 
w varies as indicated. 
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Gene 32 P r o t e n I y M  

FIGURE 6: Titration of poly(riboethenoadeny1ic acid) (10" M residues) 
with gene 32 protein in buffer B [see Kowalczykowski et a1 (1981b)l 
containing 0.45 M NaCl at 25 "C. The solid lines are theoretical 
curves for various values of w (calculated with Kw held constant at 
7.0 X lo6 M-' and n = 7 )  

= I / , ;  the second term on the right in eq 6 is simply the 
concentration of ligand that is bound a t  the midpoint of the 
titration. Once the product Kw is known, separate values of 
K and w can be determined by generatipg theoretical titration 
curves, with eq 2, in which K and w are varied individually. 

An example of this procedure is shown in Figure 6, with 
data on the binding of T4 gene 32 protein to poly[ribo(ethe- 
no)adenylic acid]. The solid lines in Figure 6 represent the- 
oretical curves that have been obtained by incrementing values 
of u in eq 2 and solving for L in terms of given values of n, 
K,  and w .  Note that the data points (unlike the theoretical 
curves) are not perfectly symmetrical about the midpoint of 
the plot. Thus, one model curve cannot be used to fit both 
the lower and upper portions of the experimental data. This 
follows because the polynucleotide lattices are not really of 
infinite length (as assumed in the binding theory), so that "end 
effects" and lattice-length heterogeneity effects become im- 
portant when the lattice is more than half-saturated. More 
will be said of finite lattices below, but here we emphasize that 
if the data are not symmetrical about the midpoint of the 
titration, the lower "half" of the titration should be emphasized 
in fitting procedures to minimize such problems. 

From a comparison of the data and model curves in Figure 
6, one can see that values of w < 500 produce binding iso- 
therms that are too shallow to fit the data, while binding 



B I N D I N G  P R O T E I N S  T O  N U C L E I C  A C I D  L A T T I C E S  

isotherms corresponding to values of w greater than 1 X lo4 
are too steep. Thus, a range of fits can be readily established, 
with the “best” fit obtained for this system at w = 1.5 X lo3. 
We note that this procedure loses resolution when values of 
w become very large; under these conditions, only a minimum 
estimate of w is obtained. 

The raw titration data can be replotted in terms of free 
ligand concentration by simply subtracting the amount of 
ligand bound at each point from the total ligand concentration, 
with eq 3. This has the advantage of making the slope of the 
steeply rising portion of the observed titration curve inde- 
pendent of polynucleotide concentration (see Figure 4; Kow- 
alczykowski et al., 1981b), and therefore, data sets obtained 
at different concentrations of lattice can be presented on the 
same plot. Either method of graphical presentation of the data 
is suitable for analysis. 

Instances where the cooperativity parameter is only on the 
order of 1-10-fold greater than n are the most difficult to fit 
accurately, because eq 6 does not apply. Here, a t  least a 
two-parameter fit is required, even if the site size is inde- 
pendently known. Although eq 6 may not provide an accurate 
approximation of the product Kw, as seen in Figure 2a for the 
curves representing values of w of 1 and 10, it may still be 
useful in obtaining a starting point for further numerical ap- 
proximation. If the data are quite good, a two-parameter fit 
will be reasonably accurate, although difficulty in assigning 
unique values of K and w may be encountered because the two 
parameters are correlated. An independent measure of the 
binding constant can be obtained by performing binding 
measurements at low ligand saturation densities (see below). 

Titration of Ligand with Lattice 
Another relatively common way of performing a 

titration-often made necessary by solubility or stability limits 
of the protein in the absence of nucleic acid-is to add in- 
creasing amounts of lattice to a fixed concentration of ligand. 
Again, spectroscopic changes in ligand properties can be used 
to measure interaction, but in such titrations the data are 
usually plotted in terms of fractional saturation of ligand 
(instead of lattice as in the previous section), since here a fixed 
amount of ligand is being titrated. 

As an example, the binding of polynucleotide by gene 32 
protein results in quenching of the intrinsic fluorescence of the 
protein, and thus, this signal can be used to monitor the extent 
of ligand binding. Although this is an experimentally 
straightforward procedure, the analysis of the results obtained 
from such titrations for cooperatively binding systems is not 
straightforward and can easily result in significant misinter- 
pretations. The reason for this is qualitatively that while the 
free ligand concentration continuously increases in a ligand- 
to-lattice titration, in a lattice-to-ligand titration one begins 
with a great excess of ligand and ends with a great excess of 
lattice. This means, for highly cooperative systems, that as 
lattice is added and free ligand concentration in the titration 
cell is depleted a point will be reached at  which the concen- 
tration of ligand that remains free is only l/(Kw). As more 
lattice is added beyond this point, additional ligand will only 
bind noncontiguously (Le., with a net affinity of K rather than 
of KO; Figure 1). As a result, an apparent plateau in the 
titration will be reached at a level that will depend on the total 
ligand concentration used in the titration. This plateau will 
not correspond to saturation. 

To illustrate this effect quantitatively, in Figure 7 we present 
the results of some model calculations that are based on eq 
1 and 2 and use concentration values that might be encoun- 
tered in a typical fluorescence titration. In order to present 
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FIGURE 7 :  Fractional ligand saturation vs. total lattice concentration 
for various values of K and o; the product of K and o was held constant 
at lo7 M-’. The values of w are indicated in the figure. The site size 
is 10, and the concentration of total ligand is 2.5 X lo-’ M. 

curves with a wide range of u values in this figure, the net 
affinity (KO) is held constant a t  lo7 M-l, but the individual 
values of K and w are varied as in Figure 2. It is apparent 
that although the same values for n, K, and w were used as 
in the ligand-to-lattice titration of Figure 2, the curves in 
Figure 7 bear no resemblance (except for w = 1) to those of 
Figure 2. Note that as the value of w is increased (and K 
correspondingly decreased) two effects on the titration curves 
are observed: (i) the initial regions of the curve become 
sharper, as expected; (ii) the curves seem to approach a plateau 
value that corresponds to less than 100% ligand saturation. 
Although the more cooperative curves appear to be saturating 
at a plateau value representing less than 100% binding, this 
“plateau” is, in fact, gradually increasing and eventually ap- 
proaches 100% saturation at very high concentrations of lattice 
(data not shown). However, this “real saturation” region may 
be experimentally inaccessible and thus may never be reached. 

As pointed out above, the basis of this apparent “plateau 
effect” in cooperative titrations is easily ubderstood when one 
realizes that when lattice is added to ligand, titrations such 
as those in Figure 2 are being performed “in reverse”. That 
is, the binding density of the lattice ( u )  is being decreased as 
lattice is added, so that in Figure 2 one is proceeding along 
the binding isotherm from right to left. When the free ligand 
concentration is depleted to the point where there is little ligand 
binding in Figure 2a [leftmost side of the isotherms where the 
concentration of free protein is less than l / ( K w ) ] ,  an apparent 
end point is reached. This reasoning suggests that the per- 
centage bound at the “apparent” plateau can be increased 
simply by increasing the input (total) ligand concentration, 
so that when the apparent end point at a ligand concentration 
of 1 / ( K w )  is reached, the bound ligand represents a smaller 
percentage of the total ligand concentration. 

Figure 8 shows the effect of varying the total concentration 
of ligand on the level of the apparent “plateau”. All the 
parameters of Figure 8 are identical with those of Figure 7, 
except that the initial protein concentration is varied. Com- 
parison of these figures shows that increasing the input con- 
centration of ligand also increases the apparent plateau level 
for these cooperatively binding systems. The curves begin to 
approach the true value of saturation (100%) only when the 
input ligand concentration exceeds the value of 1 / ( K w )  by 
approximately 10-fold. Note in Figure 8 that these effects 
are not seen for a noncooperatively binding ligand or for one 
that binds moderately cooperatively (w = n); this can be un- 
derstood by observing that when w = 1-10, there is no distinct 
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FIGURE 8: Same as Figure 7 except the concentration of total ligand 
is different in each figure: (A) LT = M; (B) L, = 5 X lo-’ M; 
(C) LT = 10” M.  

region of ligand concentration (e.g., see Figure 2) where ef- 
fectively no ligand binds. 

A consequence of the phenomenon described above is that 
it is potentially very easy to misinterpret the results of a ti- 
tration in which lattice is beiiig added to ligand. An estimate 
of the site size, for example, based on the apparent end point, 
represents an underestimate of the true site size and, in ad- 
dition, depends on the initial concentration of ligand used. If 
the experiment were a fluorescence titration in which the ligand 
fluorescence is quenched, the plateau value could correspond 
to an “apparent” value of the maximum quenching (Q,,,) that 
represents a (possibly major) underestimate of the true Q,,,. 
By using the apparent (incorrect) value of e,,,, any quan- 
titative analysis of an experimental titration curve would be 
meaningless and would yield incorrect binding parameters. 
Finally, if one were only drawing qualitative conclusions from 
such titration curves, their shapes might suggest that the 
system contains two types of binding sites with differing af- 
finities, one with high affinity, corresponding to the steep 
region in Figures 7 and 8, and the other with low affinity, 
corresponding to the gradually increasing plateau region. 

In Figure 9 the effects of initial ligand concentration on the 
fractional saturation of the ligand, for a very highly cooperative 
system (w = lo7), are shown to illustrate more clearly the 
unique properties of these types of cooperative titration curves. 
Each line represents a calculated titration curve performed 
at a different initial ligand concentration. Because we have 
made w a very large value, the apparent plateaus seem very 
flat, but each curve actually does approach 100% saturation 
very slowly. On the basis of the previous discussion, the level 
of apparent saturation can be easily calculated as follows: since 
l / ( X w )  = 1 X IO-’ M, this concentration of ligand will remain 
unbound a t  these lattice concentrations. Therefore, if the 
initial ligand concentration is 1 X then only .=(I  X 

[Ligand]= I O  x - _ _ _  - -r 
- A  .* I ----- 
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FIGURE 9: Effect of varying ligand concentration in a titration of ligand 
by lattice for a highly cooperative system; n = 10, K = 1 M-I, and 
w = 10’. The concentration of ligand is indicated in the figure. The 
breakpoints of the titration curve lie on a curve (dashed line) defined 
by the equation (fraction ligand bound) = [N]/[N] + n/(Kw)], where 
[N] is the total lattice concentration. 
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FIGURE 10: Titration of gene 32 protein with poly(rA) for different 
concentrations of protein; percent fluorescence quenching of the protein 
is plotted against total poly(rA) concentration. These nonstoi- 
chiometric titrations were carried out in buffer C (Kowalczykowski 
et al., 1981b) containing 220 mM NaCl at 25 “C. Concentrations 
of gene 32 protein were 9.26 X lo-*, 1.85 X lo-’, and 6.48 X lo-’ 
M; the fitted curves were generated from eq 2 Nith parameters 12 = 
7 . 5 ,  K = 9 X lo3 M-I, and w = 1.2 X lo3 by using a value of Qmax 

= 28.5% that represents 100% saturation of the ligand by poly(rA). 

10-7)/(1 X = 90% of the total ligand will be bound to 
the lattice, which is the value of the apparent saturation plateau 
seen in Figure 9; a t  2.5 X initial ligand concentration, 
(1 X 10-7)/(2.5 X lo-’) = 60% will bind, etc. 

To illustrate that this type of behavior is actually observed 
in a “real” cooperative binding system, experimental titrations 
are presented in Figure 10 in which the quenching of the 
intrinsic protein fluorescence of gene 32 protein upon nucleic 
acid binding is monitored as poly(rA) is added to fixed con- 
centrations of gene 32 protein. By changing the initial total 
concentration of gene 32 protein in the cuvette, curves with 
different apparent end points and different apparent values 
of e,,, are obtained (as expected from Figures 8 and 9). The 
true values of n and Qmax were determined by performing 
titrations under stoichiometric conditions a t  low salt and were 
found to be 7.5 nucleotide residues and 28.5% (of the un- 
complexed protein fluorescence), respectively. From com- 
parison of the titration data with model curves, K was de- 
termined to be 9 X I O 3  M-l and w to be l .2 X IO3. These 
values of K and w are in good agreement with those obtained 
previously with ligand-to-lattice titration procedures (Jensen 
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et al., 1976; Kowalczykowski et al., 1981b; Newport et al., 
1981). 

Thus, the proper analysis of this type of cooperative titration 
data requires that one know whether the observed plateau 
represents a true or an apparent end point; this is particularly 
important when indirect methods (such spectroscopic signals) 
are used to detect complex formation. 

The easiest way to determine whether a true end point has 
been reached in a lattice-to-ligand titration is to vary the initial 
ligand concentration (as in Figure 9) in order to see whether 
the apparent end-point plateau value is constant (when nor- 
malized for the difference in ligand concentrations) and 
whether the apparent site size is unchanged. If the value of 
n is invariant in each titration, then conditions are stoichio- 
metric and the value of n is defined. If the apparent plateau 
values are invariant, but the experimentally determined values 
of n are not constant, then ligand is binding noncooperatively 
but binding conditions are not stoichiometric. Finally, if 
neither n nor the plateau value is invariant with initial ligand 
concentration, then binding is probably cooperative and results 
such as those of Figure 9 are expected. 

Once the value of n is known, the experimental titration 
curves can be analyzed to yield values of K and w by an 
approach similar to that described for ligand-to-lattice titra- 
tions. If the system is noncooperative, the value of K is varied 
until a good fit is obtained. If the system is highly cooperative 
(o > IO3), then one can take advantage of the fact that at the 
apparent “breakpoint” of a nonstoichiometric lattice-to-ligand 
titration the concentration of free ligand (not lattice) is ap- 
proximately equal to l /(Ko).  Then, as was done previously, 
model curves can be generated with a fixed value of Kw, but 
reciprocally changing values of K and w,  until an adequate fit 
to the data is achieved. As with the ligand-to-lattice titration 
data, the experimental points may deviate from the calculated 
curves due to the fact that the experimental lattices are of finite 
size. However, in lattice-to-ligand titrations this deviation will 
manifest itself mostly a t  low lattice concentrations (the left- 
hand side of plots such as Figure 10). This is the region of 
the curve where the binding density is the greatest and where 
finite lattice effects are most pronounced (see below). Un- 
fortunately, this is also the region of the titration curve that 
carries the most experimental “information”. Thus, lattice- 
to-ligand titrations will tend to yield underestimated values 
of w .  

Experiments at Very Low Binding Densities 
In addition to the titration methods that we have discussed, 

one can obtain values of K and w by any other method that 
allows the determination of the free ligand concentration. The 
approach to be described in this section takes advantage of 
the fact that at very low binding densities the amount of ligand 
bound to the lattice depends only on the value of K and is 
independent of w. An additional benefit of working at such 
low binding densities is that the “overlap” problem becomes 
insignificant, so that the amount bound will be independent 
of the site size, n. This is useful if stoichiometric binding 
conditions cannot be found for the system of interest. 

This effect is illustrated in Figure 11, in which we plot eq 
2 with K held constant and calculate free ligand concentrations 
(L) as a function of u for different values of w .  Note that at 
low binding densities (Le., v I all of the curves converge 
to a common value. In this region the free ligand concentration 
is independent of w ,  and from Figure 11 we see that this 
situation applies for binding densities (v) less than l/(lOw). 

The fact that the curves for constant values of K with 
variable values of w are superimposable at very low values of 
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FIGURE 11: Logarithm of the ligand concentration (Lr) vs. logarithm 
of binding density ( u ) ,  for values of K = 1 M-’ and n = 7.  

u allows one to determine a value of K alone, even for highly 
cooperative systems. By evaluating eq 2 in the limit as v - 
0, one obtains 

lim u/L = K (7) 
I C 0  

Thus, at very low values of u ( u  < O.l/w), w and n drop out 
of eq 2, and L depends only on K. 

This approach can be exploited by any method in which low 
binding densities can be attained and free ligand concentration 
determined. For studies with T4 gene 32 protein, a DNA- 
cellulose column technique (deHaseth et al., 1977) was used, 
in which the concentration of bound DNA was approximately 

M (in nucleotide residues) and free protein concentrations 
were determined by intrinsic protein fluorescence, allowing 
values of u as low as to be attained [see Kowalczykowski 
et al. (198 1 b) for details]. In addition, any other technique 
that enables one to work at high lattice-to-ligand ratios will 
be applicable [e.g., sedimentation (Draper & von Hippel, 1979; 
Yamamoto & Alberts, 1974) or ultrafiltration], coupled with 
any sensitive method for detecting the free ligand concentra- 
tion, such as radioactive labeling, enzyme assay, or immuno- 
logical detection; the lower limits of u and L attainable will 
depend only on the method used. 

Since eq 7 allows us to determine K independently of the 
effects of cooperativity, w cannot be determined directly from 
these low binding density experiments. However, the results 
can be coupled with an independent measurement of Kw to 
determine w as well. A method for determining Kw that differs 
from any described in this paper has been presented elsewhere 
(Kowalczykowski et al., 1981b; Newport et al., 1981) and 
referred to as the “salt back-titration” method (see references 
for details). Briefly, protein-nucleic acid complexes are formed 
and then titrated with NaCl to dissociate the complex. At salt 
concentrations at which half of the initially bound ligand is 
dissociated, KO = 1/L (if n << w ) .  Since half of the ligand 
is bound and half is free, L = (1 /2)&, resulting in KO = 2/&, 
which defines the value of Kw at that salt concentration. 
Separate values of K and w cannot be readily determined by 
the salt back-titration method, but if K is measured at a 
particular salt concentration with the low binding density 
method, then w is also known. 

This combined approach can also be used directly to par- 
tition the salt dependence of the Kw product between K and 
w. This is shown for gene 32 protein binding to single-stranded 
DNA in Figure 12, in which we plot the free protein con- 
centration data points as determined by the DNA-cellulose 
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FIGURE 12: Logarithm of free ligand concentration vs. logarithm of 
salt concentration. The data points were obtained by the DNA- 
cellulose column method with gene 32 protein as a function of log 
[NaCI]. [DNA] = 1.3 X IO-2 M, and v = 1.3 X [see Kow- 
alczykowski et ai. (1981b) for details]. The theoretical lines were 
calculated with eq 2 and values of Kw determined previously for 6x174 
DNA (Newport et al., 1981). The dashed lines are for fixed values 
of K ,  with w changing with [NaCI] as indicated. The solid lines are 
for fixed values of w. with K changing with [NaCI] as indicated. 

column method a t  various salt concentrations. The salt 
back-titration method was used to determine Kw at each salt 
concentration (data not shown), and this value of Kw was 
inserted into eq 2 to calculate the expected values of v a t  the 
various salt concentrations for various trial values of K and 
w (see legend). Since Kw is very salt dependent [6 log (Kw) /6  
log [NaCI] = -6.3; Newport et al., 19811, the results presented 
in Figure 12 can be used to demonstrate that the salt depen- 
dence of Kw is entirely attributable to K and not to w ,  which 
stays constant at lo3 as the salt concentration is varied. This 
follows because if K were salt-independent, L would not change 
with salt concentration in these low binding density experi- 
ments and the data points would fall on one of the dashed lines. 
Instead, we see that the experimental points fall on one of the 
solid lines, corresponding to a value of w that is independent 
of salt concentration. 

Cluster Size Distributions 
Another way of determining the cooperativity of binding 

is to take advantage of the facts that ligands bind to lattices 
in “clusters” containing one or more contiguously bound lig- 
ands and that the size distribution of these clusters depends 
on the values of n, K ,  and w a t  which the complexes are 
formed. Thus, n, K ,  and w can be determined by measuring 
the average cluster size or, ideally, the cluster size distribution 
of the binding system. A method that is, in principle, ideally 
suited to such analysis is electron microscopy, where each 
cluster can be “frozen” and sized through direct visualization. 
This method has been used to determine an estimate of w for 
the binding of E. coli SSB protein to single-stranded DNA 
(Ruyechan & Wetmur, 1975) and to estimate w for E. coli 
transcription termination protein rho binding to RNA lattices 
(D. G. Bear et al., unpublished results). Alternatively, cluster 
sizes of proteins bound to nucleic acids can also be determined 
(in situations where protein dissociation is slow or binding 
equlibria can be frozen-perhaps by rapid cross-linking 
techniques) by utilizing a method such as the partial nucleo- 
lytic digestion of uncomplexed DNA, followed by a deter- 
mination of the size (average or distribution) of the protein- 

8 (Fractional Lo t t l ce  Saturat icp)  

FIGURE 13: Logarithm of the average cluster size of bound ligands 
vs. fractional lattice saturation for the values of w indicated and n 
= 7 .  

protected regions of the DNA. 
In order to use such methods to determine binding param- 

eters, the theoretical distribution of cluster sizes must first be 
known, and for this, we again use the McGhee-von Hippel 
formalism [see Schellman (1974) for an alternate approach]. 
With the McGhee-von Hippel (1974) approach, the average 
cluster size (q is simply the average number of ligands bound 
per lattice (B)  divided by the average number of bound ligands 
that are free on the right of these ligands [ B  - B(b,b,)]. The 
term b,b, is the conditional probability that a given bound 
ligand will be located next to another bound ligand on the right 
(and so will not represent the end of a cluster); b,b, is thus 
defined as [ l  - ( n  - 2w + 1). - R]/[2v(w - I ) ]  [see McGhee 
& von Hippel (1974)j. Thus 

(see eq 2 for definition of variables). Equation 8 shows that 
the average cluster size is dependent on n, w ,  and v (which is 
dependent on K ) .  In Figure 13, we have plotted 5‘ as a function 
of the fractional lattice saturation, 0 (=nv), for various values 
of w [see Schellman (1 974) for a similar plot]. As expected 
intuitively, the average cluster size at a given level of lattice 
saturation is larger for greater values of the cooperativity 
parameter; Le., cooperatively binding ligands tend to cluster 
more. In addition, as the binding density increases the average 
size of the bound clusters increases, approaching infinity as 
the fractional saturation approaches 100%. Because real 
lattices are of finite length, Figure 13 suggests that experi- 
mental deviations from the theory will be observed when the 
lattice length becomes less than the calculated cluster size and 
that this deviation will become pronounced a t  lower binding 
densities for ligands that bind with higher cooperativity. Figure 
13 also shows that as 0 - 0 all cluster sizes approach unity 
and that this limiting value is approached more rapidly for 
less cooperative systems (see also the previous section on low 
binding density experiments). 

A more informative approach is to calculate the actual size 
distribution of bound clusters (i,e., the fraction of all of the 
ligands bound that are in a given sized cluster) as a function 
of the fractional saturation of the lattice. The fraction of 
bound ligand (F,) in clusters of size c can be calculated from 
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FIGURE 14: Fraction of bound ligand at a given cluster size vs. cluster 
size for various values of fractional lattice saturation, with n = 7 and 

= 103. 

the conditional probabilities defined in eq 13 of McGhee and 
von Hippel (1974). The probability of finding a cluster of c 
ligands next to a given free lattice position is 

p,'=ff c = o  

p,' = Vb,)(b,b,)"(bn? c > o  

If only clusters of size 1 or greater are considered, then the 
above probability must be normalized by 1 - Po = 1 - f f  so 
that it will sum to 1: 

where eq 2 and 3 of McGhee and von Hippel (1974) are used 
to simplify the expression. Finally, F, can be obtained by 
multiplying Pc by the cluster size and normalizing by the sum 
over all cluster sizes: 

m - c( 1 - b,b,)*(b,b,)"' (9) 
cpc 

c CP, 
F c = - -  

c= 1 

where the summation is seen to be simply the average cluster 
size as defined in eq 8. 

In Figure 14, we have plotted the cluster size distribution 
predicted by eq 9 for different values of fractional saturation 
for a ligand binding with a cooperativity value of w = IO3 (e.g., 
T4-coded gene 32 protein) [see Lohman (1983) for a similar 
plot]. As expected, the distribution of bound ligands shifts 
to progressively larger sized clusters as the fractional saturation 
increases. Also note that though ligand is bound in clusters 
of all possible sizes (we have truncated the graph at c = 100, 
but it actually continues to infinite cluster length), at a 
fractional saturation of 10% very little ligand is bound in 
clusters greater than 100 ligands in length, while at a fractional 
saturation of 90%, many ligands would be expected to be in 
clusters of length greater than 100. As mentioned previously, 
experimental observations will deviate from theoretical be- 
havior due to loss of the potential cooperative interactions that 
are unable to form at the ends of the finite-length lattices. 
Thus, with gene 32 protein as an example, if the actual length 
of the polynucleotide lattice is 400 residues, the maximum- 
sized cluster attainable would be approximately 60 protein 
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FIGURE 15: Theoretical (Epstein, 1978) plots of fractional saturation 
of lattice vs. free ligand concentration for various values of lattice 
length (M), with n = 7, K = lo4 M-', and w = 2 X lo3. 

molecules in length. Consequently, significant deviations from 
ideal behavior would be expected when a large proportion of 
the bound molecules occurs in clusters greater than this length 
(Le., at fractional saturations greater than 70%). This is, in 
fact, observed in experimental titration curves (see Figure 6) 
and is the basis of the nonsymmetrical appearance of the 
experimental data and the reason that we emphasize the fit 
to the lower half of the titration curve in the analysis of lig- 
and-to-lattice titration curves. 

As indicated above, the cluster size distribution approach 
to determining K and w is ideally suited to an experimental 
method where the actual (equilibrium) number and size of 
bound ligand clusters can be counted (e.g., by electron mi- 
croscopy). To use this approach, a histogram of cluster sizes 
is determined at various values of fractional saturation of the 
lattice and then compared with theoretical curves generated 
by eq 9. 

While this approach is very straightforward, practical 
considerations may intervene. Difficulties will be encountered 
if the method of sample preparation does not ensure the 
"freezing" of the original cluster equilibrium. Obviously, the 
migration of ligands during sample preparation can seriously 
perturb the cluster size distribution obtained. Careful controls 
should eliminate errors introduced by nonequilibrium effects, 
or at least allow extrapolation to the true (initial) equilibrium 
distribution. 

Effects of Finite-Lattice Length 
Up to this point, the discussion has implicitly assumed that 

we always deal with a lattice of infinite length, since the 
derivation of eq 1 and 2 requires this. However, experimentally 
all lattices are of a finite length and usually exhibit a heter- 
ogeneous length distribution. We must then ask, at what 
length does a lattice become essentially infinite, and if a lattice 
is too short to be considered infinite, what effect does this have 
on the experimental results? The answer to the first question 
has been addressed in the previous sections, and from Figure 
13 we can see that the point at which a lattice can be con- 
sidered to be of "infinite" length will depend on the coopera- 
tivity of binding, the ligand site size, and the extent of lattice 
saturation; as each of these factors increases, experimentally 
longer lattices will be needed in order to utilize the approaches 
described previously without modification. 

If the experimental situation does require the use of a lattice 
that is of "finite" length, a mathematical treatment that has 
been developed by Epstein (1978) can be employed. In Figure 
15 we have used this method to generate theoretical curves 
that demonstrate the effects of finite lattice length on titration 
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FIGURE Al: Nonlinear least-squares fit for a competition titration 
of a 1:l mixture of poly(cA,U) (1:l) and poly(dT) with gene 32 protein 
in 0.1 M KCl. The concentration of the lattices is indicated in the 
figure, and the monitored signal is the increase in poly(tA,U) 
fluorescence [which plateaus at AF/F = 1.8; F is the initial value 
of the fluorescence of the poly(cA,U) lattice]. The optimized pa- 
rameters obtained for gene 32 protein bindin were n = 8.5 and w 

X lo6 M-I. 

[Gene 32 F'r~lein]~ (MI IO') 

= lo3 for both lattices, Kprok = 1.3 X lo6 M- f , and KwmpetitOr = 1.6 

where S D  is the square deviation, y i  is the observed value of 
the dependent variable a t  a given value of the independent 
variable ( x i ) ,  and yi is the predicted value of the dependent 
variable a t  the same point, calculated from the model for a 
given set of parameters. If the model curve can be expressed 
in a form that is linear in xi,  the process of minimizing eq A1 
is quite simple. Unfortunately, eq 1 and 2 cannot be expressed 
as linear functions of the independent variable ( L ) ;  in fact, 
they cannot even be solved explicitly for the dependent variable 
(v or 8). Nonlinear least-squares algorithms have been de- 
veloped that can accomodate both of these limitations, but they 
also require explicit forms of SY/Sq for each parameter q that 
is to be fit; these also are not conveniently available from eq 
1 and 2. 

Our approach has been to develop a simple computer pro- 
gram that searches a restricted portion of "parameter space" 
for values that give a minimum in eq A l .  This brute force 
approach is made possible by the observation that eq 1 and 
2 are both monotonically increasing functions and that the 
effects of varying the parameters n, K ,  and w are thus equally 
predictable. The process can be divided into two parts: (i) 
given values for n, K ,  and w, calculate the square deviation 
(SD) between that model and the observed data; (ii) system- 
atically vary the parameters to find the smallest value of SD. 
This discussion will focus on titrations in which lattice is added 
to a fixed concentration of ligand, although a similar approach 
can be used with the reverse type of titrations. 

Calculation o f S D .  The most common types of titration 
data involve total ligand (b) as the independent variable and 
some signal ( S )  that is assumed or demonstrated to be directly 
proportional to fractional saturation (8) as the dependent 
variable. Equation A1 then becomes 

Here, si represents the observed signal for each experimental 
value of &, Si = OiS,,, represents the calculated signal for 
that same point, and S,,, is the maximum signal observed 
when 8 = 1 .  

Since eq 1 and 2 cannot be solved explicitly for 8, it is 
necessary to work backward to find Oi values. The 8 axis is 
divided into equally spaced intervals (usually 50-1 00), and 

the value of LT is calculated from eq 3 for each value of 8. 
Since these curves are all monotonically increasing, it is then 
possible to find a unique pair of neighboring LT values that 
bracket the observed point. The corresponding 8 values will 
then also bracket the predicted value of 8, for that point, and 
O1 can be estimated by interpolation. 

The best fit value of S,,, can be calculated directly from 
eq A2 by setting S(SD)/SS,,, = 0 and solving for Smax: 

S m a x  = C8isi/C8i2 (A31 

Equation A3 can then be substituted back into eq A2 to obtain 

SD = Cs,Z - C(O,S,)~/C~,~ = C S , ~  - S,,,CO,S, (A4) 

Thus, given the predicted values of the fractional saturation 
for each data point, one can use eq A4 to calculate SD. 

Minimization of SD. Minimization of the square deviation 
is simply a matter of varying one parameter at a time and 
checking to see if the new value of SD is smaller than the 
previous one. If all parameters are treated as unknowns, this 
could mean a great deal of searching and poor estimates of 
the unknowns, especially if S,,, is added to the list of un- 
knowns (as would be the case if conditions that permit com- 
plete saturation of the lattice are not attainable). Any in- 
formation that will help to place boundaries on the parameters 
should be used in the search. Thus, the techniques described 
in the body of this paper are applicable here as well. 

The following is a list of general guidelines that can limit 
the search and are applicable to most standard titrations for 
which lattice concentrations (in nucleotide residues) range from 

to loT9 M: (i) Values of KO > 10I2 will give curves that 
are too sharp to distinguish one from another, while values 
of Kw C lo4 will probably not result in measurable binding 
under standard spectroscopic conditions. Thus, one may hold 
the search area within these limits. (ii) Because of limitations 
of the model for systems displaying negative cooperativity, 
values of site size for w C 1 will be indistinguishable from a 
value of n (for w 2 1) that is larger than the true site size by 
something less than one lattice unit (Le., n C Napp C n + 1 
for w C 1). Thus, the search can be limited to w 1 1. (iii) 
We have found that varying K or w by factors of 10 is an 
efficient way to approach the minimum in SD. The final 
approach is carried out in steps of loo ', and finally in steps 
of 10°.05, to obtain values of K and (J good to -0.1 log unit. 
(iv) Because K ,  w,  and n are so tightly coupled, a great deal 
of searching can be eliminated by adjusting each variable in 
rotation until the global minimum is achieved. For example, 
one first minimizes SD with respect to n while keeping K and 
w fixed; then, keep n and w fixed while making small ad- 
justments to K for a better fit, etc. (v) The tight coupling of 
n, K ,  and w also results in a fairly flat minimization function. 
That is, changes in one parameter can be compensated by 
changes in another parameter so that reasonably good fits to 
a range of parameter combinations are possible. For this 
reason, it is important that any independent information that 
can be used to constrain some of the parameters be utilized 
fully. It is also recommended that any fitting routine be set 
up to maintain a listing of intermediate results in the search 
procedure. This gives the operator a feeling for how accurately 
a particular parameter can be specified. (vi) If titrations are 
carried out under conditions for which finite lattice effects may 
be a problem, it is useful to limit the initial fitting process to 
points that are located on the lower binding density portions 
of the titration curve. Subsequently, such fits can be compared 
with fits to the entire curve to detect finite lattice problems. 
In this case, the mean square deviation [msd = SD/(number 
of data points)] may be a more convenient minimization 
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reciprocally until a fit is obtained. The specific method used 
to determine K w ,  and to fit the data, depends on whether the 
signal being used to monitor complex formation tracks the 
addition of lattice to ligand or of ligand to lattice. In either 
case, the values of n, K,  and w can often be determined without 
the use of multivariable fitting routines (although see Ap- 
pendix). The two direct titration methods are the most 
straightforward approaches to the determination of these 
thermodynamic parameters. However, due to the apparently 
unusual behavior of cooperatively binding ligands in the lattice 
to ligand type of titrations, Figures 7-9 should be studied 
carefully when such data are analyzed, since the appearance 
of these titration curves is deceptive and can lead to major 
misinterpretations (e.g., erroneously small site sizes or the 
assumed presence of two different types of binding sites). 

The strength of the low binding density approach is that it 
allows the determination of the intrinsic binding constant, K,  
independently of any knowledge of n and w ,  provided that high 
enough ratios of lattice to ligand can be attained. In addition, 
this method, when used in conjunction with a procedure such 
as salt back-titration, allows the separate determinations of 
K and w (Kowalczykowski et al., 1981b; Newport et al., 1981). 

The cluster size approach is potentially powerful and well 
suited to the analysis of electron microscopy data or of nuclease 
digestion experiments on partially protein-protected lattices. 
Knowledge of the cluster size distribution of the bound ligands 
provides the necessary information to define K and w ,  provided 
that the bound ligand clusters can be studied in a true (or 
“frozen”) equilibrium distribution; i.e., there must be no loss, 
gain, or migration of ligand due to the sample preparation 
methods employed. 

Finally, we have shown that the effects of finite-length (i.e., 
of “real”) lattices is to introduce “artifactual” curvature into 
titration data, particularly at high values of fractional lattice 
saturation. Such curvature has the effect of making the ap- 
parent cooperativity of the system less than that expected for 
the infinite-length lattice and of making stoichiometric titration 
data seem to be “nonstoichiometric”, potentially resulting in 
a severe underestimate of the apparent binding affinity of the 
system. Since the size of the experimental lattice may be 
intrinsic to the system being investigated, little can sometimes 
be done to alleviate the problem, and it is best avoided (if the 
objective is to determine thermodynamic parameters) by using 
lattices that are as large as possible or by focusing on data 
obtained at  lower levels of binding density. 

Although not discussed quantitatively in this paper, another 
source of difficulty that could be encountered in all the pro- 
cedures presented arises from another characteristic of “real” 
experimental lattices, Le., compositional heterogeneity of the 
lattice. Since eq 1 and 2 are strictly applicable only to ho- 
mogeneous lattices, any heterogeneity will manifest itself as 
a deviation from theoretical predictions. The extent of the 
deviation will depend on the actual composition (and/or se- 
quence) of the lattice used, as well as on the differences in 
values of K and w that result from these differences in com- 
position. For example, if the lattice is compositionally het- 
erogeneous in a random manner, the values of K and w will 
represent approximately “average” values for the entire lattice. 
One might then expect that values of w determined on such 
systems would represent underestimates, due to the broadening 
of the binding transition because of heterogeneity in K, just 
as melting transitions of native DNA are broadened relative 
to transitions involving homopolymer duplexes. At the other 
extreme, if the lattice consists of large distinct domains of a 
given composition (much like a block copolymer), the binding 
of a ligand to this lattice would be approximately equivalent 

V O L .  2 5 ,  N O .  6 ,  1 9 8 6  1237 

to binding to a mixture of lattices, each of which has the 
composition of a given domain. If w were large, then the 
ligands would tend to bind and cluster to that region of the 
lattice for which the intrinsic binding constant, K, is the largest 
and the various regions of the lattice would be saturated in 
order of increasing K .  In any event, the approaches outlined 
here are still generally applicable; however, the values of K 
and w obtained will represent some weighted average that is 
dependent on the lattice composition and sequence. Such 
compositional effects have been observed in the binding of gene 
32 protein to nucleic acids (Newport et al., 1981). 

In summary, our results show that one can apply a theory 
based on the binding of ligands to homogeneous linear lattices 
to the binding of proteins to real nucleic acids and proceed 
to extract thermodynamic information about complex for- 
mation. It is important to be aware of the difficulties that can 
be encountered with the interpretation of such experimental 
data, particularly when binding is measured by titrating ligand 
with lattice. In addition, it is necessary to realize that binding 
theories have usually been developed assuming homogeneous 
lattices of infinite length, and thus deviations due to the 
breakdown of this assumption will occur in predictable ways. 
As mentioned previously, the success of these methods has 
already been demonstrated with the phage TCcoded gene 32 
protein-nucleic acid interaction system, and the results ob- 
tained with each method we have described are consistent with 
one another. The methods presented here should be generally 
applicable to all proteins that bind nonspecifically to either 
single- or double-stranded nucleic acids and should be useful 
in many types of quantitative studies of protein-nucleic acid 
interactions. 
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APPENDIX 
Nonlinear Least-Squares Procedures for  Fitting Titration 

Curves. Titrations can be modeled directly, or they can be 
converted into Scatchard or related binding plots by lineari- 
zation techniques [see McGhee & von Hippel (1974)l. In 
general, we prefer direct modeling, since this minimizes bias 
in the fit due to transformation of errors in the data. The 
wide-spread availability of computers and graphics devices 
allows visual “fits” to the experimental data to be readily 
performed by most investigators. However, not all titrations 
are amenable to the visual fitting techniques described in the 
body of this paper; for these titrations, a numerical fitting 
approach may be more useful. Such a procedure may be 
needed if stoichiometric binding conditions cannot be found 
that can provide an independent estimate of n. Similarly, if 
binding cooperativity falls in the “intermediate” range (w < 
lOn), a visual separation of h and w may not be possible. 
Other reasons for turning to a numerical fitting technique 
might include a desire to process titrations more quickly and 
with less subjectivity, though we emphasize that some visual 
fits should be tried first to assess the overall “reasonableness” 
of the outcome. 

The usual approach to finding the best fit of a model curve 
to observed data is to employ the method of least squares. This 
method involves finding the minimum with respect to all un- 
known parameters (i.e., finding SSD/Sq = 0 for each param- 
eter q) of the function 

(‘41) SD = C(Y, - yJ2 
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FIGURE AI: Nonlinear least-squares fit for a competition titration 
of a 1:l mixture of poly(eA,U) (1:l) and poly(dT) with gene 32 protein 
in 0.1 M KCI. The concentration of the lattices is indicated in the 
figure, and the monitored signal is the increase in poly(tA,U) 
fluorescence [which plateaus at A F / F  = 1.8; F is the initial value 
of the fluorescence of the poly(tA,U) lattice]. The optimized pa- 
rameters obtained for gene 32 protein bindin were n = 8.5 and w 

X I O 6  M-’. 
= lo3 for both lattices, Kprobe = 1.3 X lo6 M- K , and Kcompetitor = 1.6 

where SD is the square deviation, y ,  is the observed value of 
the dependent variable a t  a given value of the independent 
variable ( x l ) ,  and Y, is the predicted value of the dependent 
variable a t  the same point, calculated from the model for a 
given set of parameters. If the model curve can be expressed 
in a form that is linear in x, ,  the process of minimizing eq A1 
is quite simple. Unfortunately, eq 1 and 2 cannot be expressed 
as linear functions of the independent variable ( L ) ;  in fact, 
they cannot even be solved explicitly for the dependent variable 
(v or 0).  Nonlinear least-squares algorithms have been de- 
veloped that can accomodate both of these limitations, but they 
also require explicit forms of SY/Sq for each parameter q that 
is to be fit; these also are not conveniently available from eq 
1 and 2. 

Our approach has been to develop a simple computer pro- 
gram that searches a restricted portion of “parameter space” 
for values that give a minimum in eq A I .  This brute force 
approach is made possible by the observation that eq 1 and 
2 are both monotonically increasing functions and that the 
effects of varying the parameters n, K,  and w are thus equally 
predictable. The process can be divided into two parts: (i) 
given values for n, K,  and w, calculate the square deviation 
(SD) between that model and the observed data; (ii) system- 
atically vary the parameters to find the smallest value of SD. 
This discussion will focus on titrations in which lattice is added 
to a fixed concentration of ligand, although a similar approach 
can be used with the reverse type of titrations. 

Calculation o f S D .  The most common types of titration 
data involve total ligand (b) as the independent variable and 
some signal ( S )  that is assumed or demonstrated to be directly 
proportional to fractional saturation (0) as the dependent 
variable. Equation A1 then becomes 
S D  = C(S,  - s , ) ~  = Smax2C012 - 2Sma~C01~, + CS,’ (A2) 

Here, s, represents the observed signal for each experimental 
value of L,, S, = 8,Sm,, represents the calculated signal for 
that same point, and S,,, is the maximum signal observed 
when 0 = 1 .  

Since eq 1 and 2 cannot be solved explicitly for 0, it is 
necessary to work backward to find O1 values. The 0 axis is 
divided into equally spaced intervals (usually 50-1 00), and 

the value of LT is calculated from eq 3 for each value of 8. 
Since these curves are all monotonically increasing, it is then 
possible to find a unique pair of neighboring LT values that 
bracket the observed point. The corresponding 0 values will 
then also bracket the predicted value of 0; for that point, and 
O1 can be estimated by interpolation. 

The best fit value of S,,, can be calculated directly from 
eq A2 by setting S(SD)/SS,,, = 0 and solving for S,,,: 

Equation A3 can then be substituted back into eq A2 to obtain 
S D  = CS; - 
Thus, given the predicted values of the fractional saturation 
for each data point, one can use eq A4 to calculate SD. 

Minimization of SD. Minimization of the square deviation 
is simply a matter of varying one parameter at a time and 
checking to see if the new value of SD is smaller than the 
previous one. If all parameters are treated as unknowns, this 
could mean a great deal of searching and poor estimates of 
the unknowns, especially if S,,, is added to the list of un- 
knowns (as would be the case if conditions that permit com- 
plete saturation of the lattice are not attainable). Any in- 
formation that will help to place boundaries on the parameters 
should be used in the search. Thus, the techniques described 
in the body of this paper are applicable here as well. 

The following is a list of general guidelines that can limit 
the search and are applicable to most standard titrations for 
which lattice concentrations (in nucleotide residues) range from 

M: (i) Values of Kw > 10l2 will give curves that 
are too sharp to distinguish one from another, while values 
of Kw < lo4 will probably not result in measurable binding 
under standard spectroscopic conditions. Thus, one may hold 
the search area within these limits. (ii) Because of limitations 
of the model for systems displaying negative cooperativity, 
values of site size for w < 1 will be indistinguishable from a 
value of n (for w 2 1) that is larger than the true site size by 
something less than one lattice unit (i.e., n < NaPp < n + 1 
for w < 1).  Thus, the search can be limited to w L 1. (iii) 
We have found that varying K or w by factors of 10 is an 
efficient way to approach the minimum in SD. The final 
approach is carried out in steps of l oo ’ ,  and finally in steps 
of looo5, to obtain values of K and w good to -0.1 log unit. 
(iv) Because K ,  w ,  and n are so tightly coupled, a great deal 
of searching can be eliminated by adjusting each variable in 
rotation until the global minimum is achieved. For example, 
one first minimizes S D  with respect to n while keeping K and 
w fixed; then, keep n and w fixed while making small ad- 
justments to K for a better fit, etc. (v) The tight coupling of 
n, K,  and w also results in a fairly flat minimization function. 
That is, changes in one parameter can be compensated by 
changes in another parameter so that reasonably good fits to 
a range of parameter combinations are possible. For this 
reason, it is important that any independent information that 
can be used to constrain some of the parameters be utilized 
fully. It is also recommended that any fitting routine be set 
up to maintain a listing of intermediate results in the search 
procedure. This gives the operator a feeling for how accurately 
a particular parameter can be specified. (vi) If titrations are 
carried out under conditions for which finite lattice effects may 
be a problem, it is useful to limit the initial fitting process to 
points that are located on the lower binding density portions 
of the titration curve. Subsequently, such fits can be compared 
with fits to the entire curve to detect finite lattice problems. 
In this case, the mean square deviation [msd = SD/(number 
of data points)] may be a more convenient minimization 

to 
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function since it permits comparison of fits made with different 
numbers of data points. 

Competition Titrations. In some cases, the ligand and 
lattice under study may not show intrinsic signals that permit 
the direct monitoring of their interactions. For such systems 
it is still possible to obtain binding information through the 
use of competition titrations. The lattice of interest (Le., the 
competitor) is mixed with a "proben lattice for which the 
binding can be monitored, and ligand is added to the mixture. 
If the competitor binds ligand poorly compared to the probe 
(and the two are present in similar amounts), it will appear 
as though the competitor is not present during the titration. 
If the competitor lattice binds ligand as well as the probe, the 
resulting titration will appear to contain an amount of probe 
equal to the sum of probe and competitor concentrations. 
Finally, if the competitor binds ligand more strongly than the 
probe, the resulting titration will show a lag as each succeeding 
aliquot of ligand is partitioned preferentially onto the com- 
petitor. Thus, by comparing the titration of probe alone with 
the titration of a mixture of probe and competitor, it is possible 
to determine binding parameters for the competitor lattice. 

We have also modified our computer program so that 
competition titrations can be fitted numerically. The calcu- 
lation and minimization procedures are essentially the same 
as outlined above. The main difference is that the method for 
determining LT for each value of fractional saturation must 
be modified. In this case, eq 3 becomes 

LT = L + (6"/n)pro,e + (oN/n)cornpetitor (A51 

and it is necessary to determine the fractional saturation of 
competitor as well as probe. This is done by first determining 
the free ligand concentration corresponding to a given frac- 
tional saturation of probe and then searching along the com- 
petitor binding curve in a like manner until two values of L 
are found that bracket the free ligand concentration deter- 
mined for the probe. The fractional saturation of competitor 
is then determined by interpolation, and eq A5 is used to 
calculate &. 

Figure A1 shows an example of a fitted competition titration 
in which the ligand is T4 gene 32 protein and the probe and 
competitor are p o l y ( ~ A , U ) ~  and poly(dT), respectively (the 
curve has been fitted to the lower 80% only, due to severe finite 
lattice effects). The net binding affinity of gene 32 protein 
for poly(dT) is known from separate studies to be only slightly 
higher than the binding affinity for poly(eA,U) under the 
conditions of the experiment. This is confirmed by a fit to the 
titration in which log (KO) is 9.1 1 for the poly(tA,U) probe 
and 9.20 for the poly(dT) competitor. That the curve shows 
a sigmoidal character in spite of the fact that the values of 
KO are so close for the two lattices can be explained by the 
large cooperativity of binding of gene 32 protein. At very low 
fractional saturations, cooperativity has no effect, so that gene 
32 protein will partition equally between probe and competitor. 
However, as more gene 32 protein is added, it binds conti- 
guously next to protein molecules that are already bound, 
Thus, the high cooperativity magnifies the difference in binding 
constants between probe and competitor, favoring saturation 
of the competitor before full saturation of the probe can be 

Poly(tA,U) is a random copolymer of ethenoadenosine mono- 
phosphate and uridine monophosphate residues. Such fluorescent co- 
polymers have proved very useful for the determination of titration curves 
of protein with nucleic acid. Details of the preparation and use of these 
copolymers to study the binding of E. coli transcription termination factor 
rho to nucleic acids will be presented elsewhere (J. M. McSwiggen, D. 
G. Bear, and P. H. von Hippel, unpublished results). 

achieved. For this reason, the titration curve shows a short 
initial rise, followed by a lag as added gene 32 protein par- 
titions preferentially onto the competitor, followed by a second 
rise as additional gene 32 protein finally saturates the probe 
lattice. Under these conditions of high cooperativity and high 
binding constant, the shape of the curve is determined almost 
solely by the ratio of affinities for probe and competitor lattice 
rather than by the absolute affinities. Thus, a proportionate 
increase or decrease in these binding constants by as much as 
20-fold has little effect on the shape of the curve below 80% 
saturation. However, a change in one binding constant relative 
to the other by as little as 5% results in a curve that no longer 
contacts the data points. Note that the ratio KcompetitorlKprobe, 
estimated from Figure A l ,  may be low due to possible fin- 
ite-lattice effects in the competitor as well as the probe lattice. 
These effects would result in premature upward curvature in 
the middle portion of the titration because ligand would begin 
binding to probe lattice prior to completely saturating the finite 
competitor lattice. The result would be an underestimate of 
Kcompetitor relative to Kprobe. 

Registry No. Poly(riboethenoadeny1ic acid), 4191 1-88-0. 
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Peroxidase-Catalyzed Covalent Binding of the Antitumor Drug 
~-Methyl-9-hydroxyellipticinium to DNA in Vitrot 

Christian Auclair,*.t Bernard Dugu6,s Bernard Meunier,§ and Claude Paolettii 
Laboratoire de Biochimie Enzymologie, INSERM U 140, CNRS LA 147, Institut Gustave Roussy, 94805 Villejuif Cedex, 
France, and Laboratoire de Pharmacologie et Toxicologie Fondamentales, Centre National de la Recherche Scientifique, 

31 400 Toulouse, France 
Received June 25, 1985 

ABSTRACT: In the presence of DNA,  the antitumor drug Il"'-methyl-9-hydroxyellipticinium (elliptinium; 
N M H E )  [Le Pecq, J. B., Gosse, C., Dat-Xuong, N., & Paoletti, C. (1975) C. R. Seances Acad. Sci., Ser.  
D 281, 1365-1 3671 is oxidized by the horseradish peroxidase-hydrogen peroxide (HRP-H20,) system to 
the quinone imine derivative Il"'-methyl-9-oxoellipticinium ( N M O E )  [Auclair, C., & Paoletti, C .  (1 98 1) 
J .  Med. Chern. 24, 289-2951, which interacts with D N A  according to the intercalation mode. When excess 
H202 was used, the major part of the quinone imine was further oxidized to the o-quinone N2-methyl- 
9,lO-dioxoellipticinium [Bernadou, J., Meunier, G., Paoletti, C., & Meunier, B. (1983) J. Med. Chem. 26, 
574-5791, In the presence of stoichiometric amounts of H202 ( H 2 0 2 / N M H E  = l ) ,  N M O E  reacts with 
DNA, yielding a fluorescent compound irreversibly linked to the nucleic acid, which is related to the covalent 
binding of the ellipticinium chromophore. Under optimal reaction conditions, N M H E  binding occurs 
according to a first-order process ( k  = 4.3 X min-') with a linear increase with respect to drug to 
nucleotide ratio up to a maximum binding of 1 N M H E  per 20 base pairs ( r  = 0.05). The fluorescence 
spectra (ex, 330 nm; em, 548 nm) of N M H E  bound to DNA,  the occurrence of energy transfer from the 
D N A  to the drug, and the D N A  length increase of the DNA-NMHE adduct suggest that the binding occurs 
at  the intercalating site with limited denaturation of the D N A  helix. The fluorescence properties of the 
ellipticine chromophore covalently bound to D N A  are consistent with linkage between the C10 of N M H E  
and a primary amine of D N A  [Auclair, C., Meunier, B., & Paoletti, C .  (1983) Biochem. Pharmucol. 32. 
3883-38861. 

x e  oxidative bioactivation of the antitumor drug N- 
methyl-9-hydroxyellipticinium (NMHE)'  has been found to 
occur through peroxidase and oxidase reactions leading to the 
generation of the reactive quinone imine N-methyl-9-oxoel- 
lipticinium (NMOE) (Scheme I) (Auclair & Paoletti, 198 1; 
Auclair et al., 1983a; Bernadou et al., 1983). In the presence 
of suitable nucleophiles such as 0, N, or S donor containing 
compounds, including amino acids, proteins, glutathione, and 
ribonucleosides, the oxidation of NMHE to NMOE results 
in the formation of covalent adducts in vitro (Auclair et al., 
1983b,c, 1984; Meunier et al., 1983; Bernadou et al., 1984). 
Evidence for the occurrence of the oxidative bioactivation of 
NMHE in vivo was provided by the detection of the gluta- 
thione-NMHE adduct in biological fluids such as bile and 
urine of patients and animals treated with the drug (Monsarrat 
et al., 1983; Maftouh et al., 1984). Consequently, hypotheses 
concerning the mechanism of the cytotoxicity of NMHE 
should take into account its possible covalent binding to bio- 
logical nucleophiles. Among the various cellular nucleophiles, 
-- 
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double-stranded nucleic acids can be considered as preferential 
targets for NMHE since the drug interacts with nucleic acids 
through an intercalating mode of a high apparent affinity (Le 

' Abbreviations: NMHE, ~-methyl-9-hydroxyellipticinium; NMOE, 
N7--methyl-9-oxoellipticinium; NMDOE, N2-methyl-9, 1 O-dioxoelliptic- 
inium; Gly-NMHE, 7,10,12-trimethyl-6H-[ 1,3]-oxazolo[5,4-c]pyrido- 
[3,4-c]carbazole; Px, peroxidase; H20,, hydrogen peroxide; HRP, 
horseradish peroxidase; r, ,  initial drug to nucleotide ratio; ex. excitation; 
em, emission. 
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