Do-It-Yourself Database-Driven Web Applications

Keith Kowalzcykowski Kian Win Ong Kevin Keliang Zhao
app2you, Inc. CSE Dept. CSE Dept.
UC San Diego UC San Diego

keith@app2you.com

kianwin@ucsd.edu

kezhao@cs.ucsd.edu

Alin Deutsch Yannis Papakonstantinou Michalis Petropoulos
CSE Dept. CSE Dept. CSE Dept.
UC San Diego UC San Diego SUNY Buffalo

deutsch@cs.ucsd.edu

1. INTRODUCTION

UCSD’s app2you project [15] (commercialized as app2you.com)
and its successor FORWARD project [11]* belong to the emerging
space of Do-It-Yourself (DIY), custom, hosted, database-driven
web application platforms that empower non-programmer
business process owners to rapidly and cheaply create and evolve
applications customized to their organizations’ data and process
needs. The hoped-for outcome of DIY platforms is paralleled to
the emergence of spreadsheets in the 80s and of graphical
presentation tools in the 90s [1]. Before the arrival of tools such as
powerpoint, polished presentations had to be prepared by graphics
professionals. PowerPoint enabled us to do them ourselves.

Generally DIY application platforms provide an application
design facility (also called application specification mechanism)
where the application owner (also called process owner and
business architect [20] specifies the application by manipulating
visible aspects of it or by setting configuration options. A simple
early example of DIY creation was form builders, where the
owner introduces form elements in a form page and the platform,
in response, creates a corresponding database schema.

A DIY platform must maximize the following two metrics: First,
how wide is its application scope, that is, what computation,
collaboration on a process, and pages (presentation) can be
achieved by applications specified using the platform’s design
facility? Second, how easy is the specification of an application
using the platform’s design facilities? When the ease increases the
technical sophistication required by the owner decreases, and non-
programmer process owners are increasingly enabled. The two
metrics present an inherent tradeoff. At the one extreme, building
applications using Java, Ajax and SQL provides unlimited scope,
but does not provide ease of specification. Platforms such as Ruby
on Rails [17] and WebML [3] make specification easier and
faster, but still not easy enough to enable non-programmer
owners. At the other extreme, creating an application by copying
an application template, as done for example in Ning [13], is very
easy but the scope of the platform is limited to Ning’s finite
number of templates. DIY platforms are between these two
extremes of the scope/ease trade-off (see Section 4 for a
discussion of particular platforms).

This paper focuses on human-centric [20] database-driven web
applications, i.e., applications whose

! Supported by UCSD’s von Liebig Center for the commercialization of
technology and NSF OCI 0721400 is collaboration with SDSC.

yannis@cs.ucsd.edu

mpetropo@cse.buffalo.edu

e entire state is captured by the application’s database as
opposed to also having out-of-database state that is
accessed by the application by interfacing to
corresponding external systems.

e the state changes (and correspondingly the business
process progresses) in response to user actions on the
web pages. We do not consider the possibility that, say,
an automated data feed produces data asynchronously
and without user request.

Furthermore the paper makes only brief mention of the
customization of the front-end’s visual and interface aspects.

In an app2you/FORWARD application users with potentially
different roles and rights interact on a web-based process.
Depending on the state of the process/application, each user has
rights to access certain pages, read certain records in them and
execute requests, which often pertain to reported records.

The presented general framework captures a broad scope of
workflows and applications but achieving its full scope requires
knowledge of SQL. The limited framework is the subset that can
be generated by the DIY design facility and is the focus of the
paper. Its essential limitation is that the core queries are SPJ
queries, including the possibility of EXISTS conditions in the
WHERE clause. An overlay of aggregation and calculation, which
captures Excel functionality, can also be added on the core limited
framework, without disrupting the design facility.

The limited framework presents an excellent scope/ease-of-
specification tradeoff point: The DIY design facility, which is
tuned to the limited framework, enables the easy specification of
applications by “business architects” [20], that is, application
owners that are not programmers but have the sophistication to
reduce their business process into web pages by specifying, in a
WYSIWYG fashion and in response to easy-to-understand
prompts, properties of the pages such as who can access each
page, what is the page’s main function, what happens in response
to an action.?

An advantage of supporting both a general and a limited framework is
that even when the non-programmer business process owner cannot
create or fully customize the entire web application (typically because
parts of the application require the functionality of the general
framework) app2you still enables a much more efficient collaboration

Submit Startup

Startup Name: Facebook

Lo

Business Plan:
Social retworking and entertainment!

Faunders

Figure 1 submit Startup Page
Evaluate Startups

Founders Reviews

Startup Name Logo Business Plan Name Title Notes

Facebook Social Mark CEO

fim. netwarking and | Zuckerberg

entertainment!

high schooll

Dustin Programmer
Moskovitz
YouTube .|| Videos on the | Steve CTO
Yﬂu o | Internet! Chen
Broadcast Yourself™
Chad CEO
Hurley

Figure 2 Evaluate Startups Page

Advisor Comments

Advisor Comments

Startup Name Logo Business Plan

Comments

Social networking and entertainment! Very targeted

Facebook er; arge!
facebook deno for
adver gt
YouTube Yuu m Videos on the Internet!
et

Broadcast

Figure 3 Advisor Comments Page

Let us first convey informally the scope of limited scope
applications through a redacted version of a real-world app2you
application. More real world examples are found in the Appendix.
We use a simplified and modified version of the app2you
application for TechCrunch50 (TC50) 2008 [19], a conference
where ~1000 startups submitted requests, along with information
packages, in order to present themselves and their products. The
app2you application was used to collect the submissions, review
them, schedule multiple rounds of appointments where the
candidates met the reviewers online to demo their products, and
select the top 50 startups. At page Submit Startup (Figure 1)
any user with a registered account can prepare and submit
information regarding her startup, which includes the name, logo,
and list of founders.* Every user is constrained to at most one
submission. The submitted startups are displayed on the

between the business process owner and IT specialists: The non-
programmer owner creates himself the bulk of the application’s pages
and workflow, which corresponds to the limited framework, while the
IT and specialists provide assistance in elaborate graphics, integration
with outside services, code for complex functions, complex SQL and
other such aspects that belong to the general framework. The business
architect can then build the rest of the process.

Users must first pass from a typical login and signup page before they
reach the page of Figure 1.

I found my friend from

Evaluate Startups page (Figure 2), which is accessible by all
reviewers, each of whom can execute three requests on each one
of them: submit a review consisting of Notes for each startup;
solicit comments from one or more advisors (essentially external
reviewers), in which case the startup submission will be displayed
on the Advisor Comments page (Figure 3) to the particular
advisors;® invite the startup submitter to schedule an interview.
The invitation results to the candidate receiving an email notifying
him to visit the Schedule Appointment page, which reports
available interview slots, submitted by the reviewers on the Post
Interview Slots page, and lets the invited startups choose one
of them
(see
Figure
4). The

Solicitations Demo Grades

Advisor Comments Score
Route to
Comments
larry@google.com | Very targeted
demographics for
advertising!

bill@microsoft.com | We are buying it!

larry @google.com 10

submitted choices are reported on the Grade Demo page, where
the reviewers post their grade for the demo given at the agreed
interview slot as part of the second review round. Finally, the
submitted demo reviews are reported on the Evaluate Startups
page, where reviewers can now make an informed decision of
which 50 startups are the most promising ones. The actual
application evolved during a period of two months, indicating the
great value of the Do-It-Yourself approach in allowing
applications to evolve as the business process evolves.

Do-It-Yourself Design Facilities of app2you & FORWARD
The general goals of the app2you and FORWARD Do-It-Yourself
design facility are typical in easy-to-use systems: (i) WYSIWYG
design, where the owner immediately experiences the result of
each specification action. (ii) Wizards that suggest to the owner
common and semantically meaningful specification options and
automate their implementation. (iii) Wizards that explain the
specification at a high level where the user does not have to
engage in schema design or database queries. Satisfying such
ease-of-use specification goals has required the introduction of
multiple novel DIY specification techniques, which are briefly
described in this paper, and the construction of algorithms that
automatically infer the schemas and queries that fuel the pages.

Many of the reported techniques of this paper have been
developed by UCSD’s app2you project and consequently were
used by app2you.com users, while other techniques (see below)
are currently under development in FORWARD and resolve
fundamental problems faced by owners in their efforts to build
applications, as observed by real world experience with
app2you.com.

Due to the highly interactive, WYSIWYG nature of the DIY design
facility we suggest that the reader watches the 10-minute high
resolution video at http://www.vimeo.com/2075363, password
app2you.

% In the actual application there were solicitations to other reviewers.

The first technique, already used extensively by app2you users, is
page-driven design (Section 3.2), which provides to the owner a
WYSIWYG model of the pages. The owner specifies properties of
the pages that have immediately visible effects on the page. For
this contribution we borrowed techniques from the
WYSIWY G/automatic design of database schemas by the creation
of respective input forms as done in form-builders even before the
web. We expanded with the WYSIWYG specification of forms
and requests that operate within the context of reported records
(for example, every input form, such as solicit action and
invite action on Evaluate Startups, operates within the
context of a submitted startup). We also launched wizards for
specifying properties by answering questions, expressed in easy-
to-understand language referring to the pages and the requests that
happen on them. app2you in response creates automatically the
pages’ structure (called page sketches, Section 2) and the
underlying schemas and queries, therefore relieving the business
process owner from designing the database layer, which is one
level away from the layers that she understands, namely, the
application page layer and the overall workflow. Hiding database
schemas, queries, constraints and other low-level details is
facilitated by an architecture where high level, easy-to-explain
derived properties of the page sketch hide hard-to-understand
complex primitive properties (Section 3.1).

By observing the users’ design efforts we found out that the
inherent difficulty (in comparison to, say, a spreadsheet) in
producing a WYSIWYG model for a collaborative application is
that the pages typically behave differently depending on which
user accesses them and the application state. The resulting
enhancement to page-driven design (Section 3.2) allows the owner
to experience the page’s function as if she were a suggested
sample user of it. The FORWARD project pushes this concept
further by prompting the user to assume the role of such sample
user and to perform particular suggested actions that reveal
properties of the pages’ operation that would otherwise not exhibit
themselves. Forcing the use of the application also leads to
collecting sample data, which become useful in exhibiting the
operation of other pages also.

Submit

Everyone Startup
1

(login required)
submit

Invited Schedule

Startups | Appointment e

invite submit

| 1
'_ Evaluate Post Interview

L tartups Slots
| . ? !
solicit] T sul:mil

submit

Reviewers Grade Demo

Advisors Advisor

Comments

Figure 4 TechCrunch50 Workflow Visualization
(in ppt; see video demo for the actual one)

Page-driven design by itself still turns out to be insufficient for
allowing the owner to reduce a non-trivial multistep process she
has in mind into a working application. In order to appreciate the
difficulty that non-programmer owners face, visualize a database-
driven application as a workflow. Figure 4 shows the workflow
visualization of the functionality of the TC50 application. User
groups are on the left. The rows in Figure 4 visualize access
rights, that is, which pages are accessible by which user group.
Intuitively, it is easy for the owner to specify in a single
specification action what appears as a single transition in the

workflow graph, such as the solicit edge. Unfortunately, a
major shortcoming of DIY online databases, which is not resolved
by page-driven design alone, is that they require the owner to
decompose a single user action in the process into coordinated
activity in two pages. For example, in page Evaluate Startups
the user submits the solicited advisor’s name. Page Advisor
Comments has a too-complex-for-non-programmers query that
filters startup submissions according to whether the currently
logged-in user appears in a solicitation related to this startup. The
FORWARD technique that will resolve this problem is the
workflow-driven design extension (Section 3.3) to the page-driven
paradigm.

Finally, in Section 3.4, we discuss work-in-progress on a
semiautomatic creation of reports. The goal is a report building
interface that

e suggests semantically meaningful joins of various data sets;
or joins of the currently reported data with other collected
data sets of the application

e does not suggest joins that would lead to provably redundant
information on the report

e explains to the owner the (potentially nested) involved data
sets and joins by referring to names that appear in the
application; avoids causing confusion with details of how the
pages are normalized in tables

e requests minimal information in the form of plain multiple
choice menus

e discovers the best placement of information on the report in
order to illustrate associations and constraints between the
reported data sets.

In effect the interface must compensate for the minimality of the
owner-provided information with algorithms that detect and
perform complex nested report creation operations.

Section 2 presents the part of the general framework that pertains
to database-driven applications and the limitations of the limited
framework. It argues why both the general and the limited scopes
can capture many practical applications. Section 3 briefly
describes an array of design techniques. Section 4 discusses
related work.

2. FRAMEWORK AND SCOPE

An app2you application is described by its application sketch,
which is defined by the general app2you framework. The general
app2you framework, which is used in the rest of the paper,
captures purely database-driven applications, i.e., it ignores
interfacing with external services and systems, which is
functionality captured by the under development general
framework in the FORWARD project.

The sketch is modified by the owner when the application is in
design mode. The sketch consists of primitive properties
(collectively called primitive sketch) and derived properties,
where the former are more low level (e.g., queries, constraints)
and their settings cannot be derived by the settings of other
properties. For ease of specification the non-programmer owner
typically does not access the primitive sketch aspects directly,
since deconstructing a process into primitive aspects tends to
require CS sophistication. Rather the non-programmer owner
indirectly accesses them via the derived properties, which explain
at a high level common questions and options, using wizards and
other components of the DIY design facility (Section 3).

The primitive sketch consists of page sketches, user group
definitions, a database schema and general properties, such as the
application name and path.

Each page sketch has a URL, a page context, which captures the
request parameters (and the types of their values) that are expected
upon requesting this page, and a top-level unit.

A unit generally has fields, a mode, requests and one visual
template for each mode. Atomic fields generally display data of
corresponding parameters of the context.

1.1 Reports

Iterator fields are important for the generation of reports. They
have a query, which is typically parameterized by the context c
and retrieves from the database tuples ty,..., t, that have schema t
and correspond to the records displayed by the iterator. The
iterator has its own unit, which contains the displayed fields of the
retrieved tuples. Such unit operates within context c+t, which is
the concatenation of c (i.e., the context within which the iterator
operates) and t (i.e., the context that the iterator generates). The
unit of an iterator field may recursively contain its own nested
iterators.

For example, the top-level unit of the Evaluate Startups page
(Figure 2) has an iterator field, whose unit contains the atomic
fields Startup Name, Logo, and Business Plan. This iterator
runs a query SELECT * FROM Submit_Startup, where
Submit_Startup is the automatically inferred table that collects
the non-nested fields of the startup submission form (see Figure
1). It also contains the (nested) iterator field Founders, whose
unit, in turn, contains the atomic fields Name and Title. The
query of the iterator Founders is SELECT * FROM Founders
WHERE Founders.Parent=? and the parameter (?) is instantiated
by the Submit_Startup.ID of the query result of the containing
iterator.

The general framework allows iterator queries to be arbitrary SQL
queries over the schema, typically parameterized by values of the
context. In this way SQL experts can utilize SQL’s full power.
The limited framework queries (lqueries) are SPJ queries with
EXISTS predicates), that is, queries of the form SELECT * FROM
OuterJoinExpression WHERE BooleanCondition, where the
condition may be parameterized with values from the context and
may also involve EXISTS(SubQuery) predicates where the
parameterized SubQuery is recursively an Iquery. Applications of
the limited framework use only Iqueries and corresponding
constraints, which are generated by the DIY facility. A DIY-built
application however may go outside the limited framework and
into the general framework by selectively utilizing “manually”
written queries and constraints for a few complex functionalities.

App2you will soon also allow calculated fields to be associated
with queries. In the limited framework such queries will capture
the typical functionality of Excel spreadsheets. In particular, a
calculated field may:

1. Compute a new “scalar” value from values of the context.
For example, if the context has attributes First Name and
Last Name then the calculated field Name may be calculated
as concat(Last Name, “,”, First Name).

2. Compute an aggregate value by applying an aggregate
function over a (potentially hidden) nested iterator of the
page. For example, the non-programmer owner may include
in Evaluate Startups a calculated field Number of
Founders that performs the count function over the
Founders iterator fields.

3. Combinations of the two above.

Lqueries, scalar calculations and aggregates capture the needs of
most typical reporting applications and even the needs of
relatively unusual request-controlling constraints, such as “each
startup may receive at most 5 advisor reviews”. Therefore the
limitation leads to small scope loss. At the same time, this
limitation enables ease of specification benefits: First, the design
facility automates the creation of reports (see Section 3.4) for
lqueries. Second, filtering and aggregation uses DIY interfaces
that have proven themselves in other settings (e.g, spreadsheets).
Third and most important, Iqueries enable the easy and efficient
computation of the context created by each report tuple, therefore
enabling the automatic inference of the database commands
associated with contextual requests, such as the submit, invite
and solicit, i.e., requests that appear in the context of reported
data, as explained in Section 1.2.

Note that for DIY simplicity the design facility focuses on pages
with a single iterator at the top level unit of the page. Such pages
are called report pages.

1.2 Contextual requests

A unit may also contain zero or more requests. Intuitively, a
request combines an HTML input form with information on the
effects of submitting the form. In particular, a request contains (i)
zero or more input fields (ii) a mechanism of submitting the form
(e.g. a button) (iii) a constraint, represented by a yes/no query (see
discussion below on representation of queries), whose semantics
is that the request is applicable only when the constraint is
satisfied, and (iv) a list of effects.

The most common effect of executing a request is an update on
the database; this will be the only effect discussed in detail next.
In the general framework such effect is captured by an SQL
statement, which is possibly parameterized by the context. In the
limited framework the database effect is automatically inferred by
the DIY design facility: It is an insertion in the database of the
values collected by the input fields. It is described in the sketch by
(i) naming the database table that takes the insertion and (ii)
mapping the input fields to type-compatible attributes of the table.
If the form contains repeated nested forms, such as the Founders
in the Submit Startup form that contains Name and Title pairs,
then each nested form is mapped to a corresponding database
table. Note that the inserted record also includes system attributes
such as the auto-generated ID, the submitter and creation
timestamp of the record.

Other effects of a request may be (i) sending an email, described
by a template (in the style of MS Word mail merge) whose
placeholders can refer to both the input fields of the form and the
system attributes and (ii) causing a navigation to another page,
which can be used to produce confirmation pages and forms
submission processes that span multiple pages.

For example, the data submission form of Figure 1 is a request. Its
effect is inserting the collected data in tables Submit_Startup
and Founders and sending a confirmation email. It has the
constraint that the currently logged-in user has not submitted a
startup already. The solicit and invite of Figure 2 are the
buttons of respective requests.

A feature that sets the scope of app2you applications apart from
the scope of online databases (see Section 4) is the ability of
reports to have nested requests, which operate in the context of the
reports. For example, the solicit request in Figure 2 operates
within the context created by the containing report iterator. Such a
nested request is said to be an annotation of its report iterator. A
nested request differs from a top level request as follows: First,
when it inserts in the database it may map values from its context
into attributes of the insertion table. For example, when the

solicit request is executed it stores a tuple in a table
Solicitation and this tuple has a foreign key attribute that
stores the ID of the startup submission within whose context the
particular nested request operates. Second, its constraint and its
side effects may also utilize the context. For example, the invite
action is associated with a constraint that there may be at most one
invitation for each startup.

Note the following important interplay between Iqueries and the
automatic inference of the insertions happening when a request is
issued: lqueries enable automatic inference of a compact context
for the nested requests that appear within reports fueled by such
Iqueries. In particular, each record produced by a Iquery creates a
context consisting of the IDs of the few database tuples that joined
together to result in it. This, in turn, enables fully automatic
inference of an efficient database insertion performed when the
nested request is activated. In particular, the insertion stores the
IDs of the compact context along with the input fields of the
request and the system attributes. This, in turn, leads to ease of
specification since the non-programmer owner does not have to
specify what part of the context of a nested request will be stored
with the insertion.

Note that the DIY design facility is facilitated by
iterator+request field combos where the iterator part of the combo
ranges over requests created in response to the request part of the
combo. For example, the iterator+request field Advisor
Comments in Figure 3 combines the submit request with an
iterator showing the comments collected by the submit request.

1.3 User group definitions

In the limited framework user groups (such as Invited
Applicants, Advisors and Reviewers) are identified as a pair
consisting of a report page and a field (of such report) whose
values are user identities. The submitter is typically such a field.

1.4 Visual Templates

The visual template of a unit uses placeholders [10] that refer to
its fields. During runtime, such placeholders are replaced by
actual values. App2you provides a list of built-in visual templates
that are automatically revised during design time to capture
changes on the structure of the page, the forms and the reports.
For example, when a new field is added on the report, the visual
template of the report is automatically revised to display the new
field. Due to space limitations we will not discuss visual templates
in further detail.

3. DO-IT-YOURSELF DESIGN FACILITY
We focus on three key DIY-enabling techniques of the design
facility and the architecture that enables them: page-driven design
(Section 3.2), workflow-driven design (in progress, Section 3.3)
and automatic creation of complex reports (in progress, Section
3.4). We use the following principles as a scorecard for the DIY
design facility.

e Prefer to provide concrete explanations of sketch properties
using WYSIWYG feedback and verbalization of prompts and
options that refers to pages, requests and other highly visible
properties of the page; rather than being abstract and making
references to database terms.

e Prefer to provide a high-level specification from which
primitive properties can be generated, rather than a low-level
specification of primitive properties that requires the owner
to deconstruct high level concepts into low level concepts.

e Prefer to summarize and enumerate design options to focus
on common cases, rather than provide an unstructured, high

degree of freedom. “Advanced user”, less prominent
interfaces should cater to the less common cases.

3.1 Derived Properties

Often an important combination of primitive properties must be
explained to a non-programmer owner at a high level, which is
close to the non-programmer’s understanding of the workflow and
the function of the pages. Therefore the derived properties
interface reads the primitive sketch and exports derived properties
and corresponding common options (called derived options) for
their settings. When the owner chooses an option the derived
properties interface translates it back to the primitive sketch. We
describe next a simple example of a derived property,
exemplifying the concept. Derived properties become paramount
in the following sections.

For example, recall that a user of the Submit Startup page may
submit only one startup. Once she makes her submission, the form
of Figure 1 disappears. At the primitive sketch level, this behavior
is achieved by a non-obvious primitive property: The constraint
associated with the form checks that the set of startup submissions
of the currently logged-in user is empty. Understanding the
behavior of the Submit form at this level is fairly complex.
Therefore the page wizard offers a derived property asking the
much more obvious question of Figure 5.

The combination of a primitive sketch with a derived properties
interface produces many benefits on scope and ease of
specification:

e It enables the incremental addition of derived properties in
the platform, as common cases that lend themselves to higher
level explanations emerge, without disrupting existing
applications. Indeed, applications created before the
introduction of a new derived aspect in the platform can
benefit from its introduction: The derived properties interface
reads their primitive sketch and exposes a high level derived
property.

e |t enables a 90/10 rule where the design facility first poses
common questions, often relying on derived properties and
derived options in order to express them. At the same time,
the wide scope enabled by the primitive sketch is available.

3.2 Page-Driven Design

The first step towards providing a high-level specification is to
allow the process owner to design her application through the
WYSIWYG model of pages, as opposed to engaging in low-level
web and database programming. Various properties of pages are
either specified by direct visualization on the pages, or via
answering simple questions about the page. The design facility in
response automatically creates the page's form/request and iterator
structure, underlying schemas and queries.

Through the high-level specification, page-driven design relieves
the owner from specifying data structures in the abstract while en
route to construct pages. Moreover, explaining the design options
available at the page level promotes easy comprehension,
especially if they are explained directly in terms of the application
layer that are easily perceived by the owner such as what is the
report/form structure of the pages. Lastly, page-driven design
facilitates immediate feedback on whether a design satisfies the
owner's requirements, since the owner can both inspect and
experience the page directly.

3.2.1 Page Wizard

Submit Startup

Name Access Rights Function Data

Everyone
(login reguired)

O Everyone (no login required)
[Everyone (login required)
O Reviewsrs

O Advisors

<Back) [Next>) (Finish) (Cancel

Name | Access Rights Function | Data

Private
Form

Table

Full
Report

Shared
Report
Private

Report

< Back) (Next ») (Finish) (Cancel

Name Access Rights| Function Data

Record Name:

Startup

« Each User can submit at mast one Startup
« Each User can see only the Startup he/she submitted
« Each User can edit / remove only the Startup he/she submitted

Back Fimish) (Cancel

Figure 5 Page Wizard for Submit Startup Page

The page wizard is the starting point of page-driven design. It
prompts with simple questions about page-specific information,
such as the page name, URL, and the groups that are authorized to
access the page. For example, access to Submit Startup is
granted to system-defined group Everyone (no login
required) (Figure 5), whereas access to Evaluate Startups is
granted to custom group Reviewers. Allowing a page to be
accessed by a group is also visualized on the workflow diagram
by placing the page in the appropriate swim-lane (row).

The page wizard prompts for the main function of the page by
enumerating a list of templates, where each template bundles a
commonly occurring combination of page properties including
presentation format and action rights. Templates are provided to
speed up the design of common cases. Such common cases may
include forms that allow each user to submit at most one record,
and tabular reports where each user sees all records but can only
edit/remove the records she submitted, etc. Where the common
case is not fully applicable to the scenario at hand, the owner can
always customize the page by overriding individual properties
independently.

Figure 5 shows the Private Form template used in creating the
Submit Startup page. The template provides the following
defaults for the following derived properties:

e The submit property of the page’s form is set to on, but
max one per user. (Each applicant can only submit one
startup.)

e The display property of the page’s iterator is set to on if
user has submitted the record, off otherwise.
(Each applicant can only see the startup info she has
submitted.)

e The edit and remove properties of the page’s iterator are
also set to on if user has submitted the record,
off otherwise. (Each applicant can only edit or remove the
startup info she has submitted)

Whenever the submit aspect is on, the page wizard also prompts
the owner to optionally assign a name to the records collected.
The record name helps the system phrase questions and options
more specifically. Figure 5 shows the wizard for Submit
Startup. It starts with a system-proposed default of Record
submitted at Submit Startup, which is later set by the
owner to Startup.

3.2.2 WYSIWYG Design

After the basic properties of the page have been specified through
the page wizard, the owner can customize the form of the page in
a WYSIWYG fashion. To create new input fields, the owner
drags-and-drop input components such as text boxes, image
upload prompts, dropdown boxes, check boxes etc. into the
request form of the page (Figure 6).

For each input component dragged into the form, a corresponding
field is added to the request, and a corresponding attribute is
added to the schema of the database table where the records
corresponding to the request are inserted. The input component
determines the data type of the field. For example, the Logo field
is created through an image upload component, therefore storage
is allocated for binary data, data can be submitted through an
HTML file input form element, and submitted data are displayed
as images.

Report | Limit

Hide >

Submit Startup

Startup Name

Figure 6 WYSIWYG Page Design

The owner may also introduce repeating nested data by creating
nested tables, such as the Founders on the Submit Startup

page.

3.2.3 DIY creation of nested requests

While existing form builders and online databases employ
WYSIWYG design for (pure) input forms, app2you advances
page-driven design to also encompass the WYSIWYG
specification of nested requests that operate within the context of
reported records. On the Evaluate Startups page for example,
the Reviews, the solicit and invite nested requests all operate
within the context of a startup. A nested request is also called
annotation by the DIY design facility if it is a submit requests,
which is associated with input forms, since the data it collects
intuitively annotate the data of the report.

An annotation is created by the drag-and-drop of an input
component into a report.? For example, the Reviews annotation is
created when a multi-line textbox for Notes is dropped into an
area corresponding to a startup, excluding the area corresponding
to Founders. In this way the owner visually specifies the context
of the Reviews annotation to be a startup. Had she accidentally

® As we will see in Section 3.3.1, more generally, nested requests are
created by the introduction of a workflow action (such as the solicit,
invite) into a report.

dropped it into the area for Founders, she would have seen a
multi-line text box for each founder, which creates an immediate
visual indication of the mistake. Recall that the design facility
automatically infers the database insertions that will be issued
when a review is submitted. For example, the insertion of a review
will lead to inserting in the underlying table Reviews a record that
contains the values collected by the input fields, system attributes
and a foreign key that refers to the startup that provides the
context for the particular review. The updates issued when a
review is edited are computed similarly.

3.2.4 Experiencing the page

WYSIWYG design is not sufficient since there are properties that
are not immediately evident from the page’s visual appearance.
For example, how many submissions can a user make? Can a user
see which other users have submitted?

The inherent difficulty faced by an owner of a collaborative
application (as compared to an owner of a spreadsheet) in
comprehending the behavior of an application and verifying it
against her requirements, is that pages typically behave differently
depending on what data has been submitted and who accesses the
data. The design facility takes a number of steps towards resolving
this problem. First, it makes every feature that is available in use
mode also available during design mode. The fact that the page
sketches are interpreted, instead of requiring a design-compile
cycle, facilitates this. Second, it always prompts the owner to
submit sample data and make requests so that corresponding
records can be shown on report pages. The third step is to prompt
and help the owner assume the role of particular sample users in
order to visualize the behavior of properties that would otherwise
be hidden.

The system suggests to the owner to experience a page as a
sample user if it recognizes that certain properties of the page
cannot be explained by the owner’s current WYSIWYG
experience. For example in Submit Startup, the system
suggests the experience submit as a sample user in order to
explain to the owner the following properties:

e The display property of the page is set to on.” The owner
understands this when she sees that the startup info record
submitted by the sample user is displayed on the page.

e The submit property of the page’s request form is set on,
but max one per user. The owner understands this when
she sees that the request form and button disappears once she
submits a startup info record.

e The edit and remove properties of the page’s iterator are set
to on.®

Note however, that the experience of the first sample user does not
fully explain whether the display, edit and remove properties
are unconditionally or conditionally on. For example, does the
iterator display all records submitted, or only records submitted by
the current user? Therefore, the design facility subsequently
engages the owner to experience as a second sample user. The
experience shows that in this the page, each user can only see, edit
and remove records she has submitted. If this is contrary to

" The display aspect of a page is a derived aspect that asks whether a page
that has a form also has a report iterators that displays the data submitted
at the form.

8 The edit and remove aspects of a page are derived aspects that ask
whether the report iterator of the page provides the built-in actions edit
and remove.

requirements, the owner can then either select another template, or
customize the individual properties defaulted by the template.

When the records displayed by iterators and the requests that are
available are controlled by complex conditions, it is harder to
reason about what sample data and sample users are needed in
order to experience a page. For example, obtaining the experience
of a solicited advisor at the Advisor Comments page requires
that (i) at least one (sample) solicitation has been made and (ii) the
owner uses the Advisor Comments page as if she were the
solicited advisor. When the conditions have been introduced in
response to workflow-driven design, as described next, it is easier
to reason about such sample users and data.

Note that in practice sample data are not needed when the first
pages of the application have actually gone in use and have
already obtained actual data.

3.3 Workflow-Driven Design

In the workflow visualization of an application (see Figure 4),
which is under design and development in the FORWARD
project, edges (also called transitions) capture requests that
happen on the page at the source of the edge and affect the
experience and rights of a user on the page at the target of the
edge. The starting points of a workflow are data collection pages,
such as Submit Startup and Post Appointment Slots that
provide requests collecting new records without implicit or
explicit references to other records. The records may be reported
on the data collection page itself, or appear on reports that
combine data collected from one or more pages. Reports, such as
Evaluate Startups, may allow their user to act on individual
reported records (review, solicit or invite). Formally, there
is an edge from page P; to page P, labeled with request a; if
executing a; on P; may change

1. the read rights of a user u on P,, that is, u can read on P, a
record r as a result of a;. For example, the submit edge from
page Submit Startup, accessible to Everyone (login
required), to page Evaluate Startups, accessible to
reviewers, denotes that reviewers gain read rights to a startup
once the request is submitted.

2. the action rights of a user u on P,, that is, u can perform a
request a, on P, as a result of a;. For example, the solicit
edge indicates that upon executing the solicit on
Evaluate Startups a user (in this case the solicited
advisor) can read and comment on a startup submission at the
Advisor Comments page.

3. the access rights of a user u on P,, that is, u gains access on
page P,. For example, the invite edge of Figure 4 indicates
that upon executing the invite request on Evaluate
Startups a user (in this case the startup submitter) gains
access to the Schedule Appointment page.

An implementation that visualizes the workflow also allows
drilling down into the nature of the edges so that the owner can
tell which type of right is affected by the edge, why it is affected,
etc.

Some workflow transitions correspond to application functionality
that is easily built using page-driven design. For example, the
submit edge from Submit Startup happens because the owner
ordered at the page wizard that the Evaluate Startups reports
the data collected on Submit Startup.

However, process owners often want to capture more elaborate
workflow logic, which leads to application functionality that
cannot be easily-built in page-driven design. Consider in Figure 4
the solicit edge from page Evaluate Startups to page

Advisor Comments, accessible to advisors. Here, the reviewers
may solicit reviews for each startup from a subset of the advisors.
Using page-driven design, the owner has to add an annotation
(request) to Evaluate Startups so that reviewers can choose
the advisors to solicit reviews from. Then she needs to create the
Advisor Comments page, for the advisors to submit their
comments, by initially report all the startups from the Evaluate
Startups page, and then keep only those where the currently
logged-in user is one of the advisors chosen to solicit a review
from; not a simple condition to state regardless of how friendly
the query building GUI is. Indeed, the query in SQL is:

SELECT *

FROM Submit_Startup

WHERE EXISTS (SELECT *
FROM Solicitations
WHERE SS_ref = Submit_Startup.ID
AND route_to=<current user>)

The Solicitations table folds the advisors chosen (route_to
column) by the reviewers for each Startup (SS_ref column).
The SS_ref column is a foreign key referring to the ID of a
Startup. The route_to column is a foreign key referring to the
ID of an advisor and the condition makes sure that the solicited
advisor is the currently logged-in user. No matter how user
friendly the query building of the design facility becomes, the
above query is too hard to be conceived by a non-programmer.

Repori Limi

Figure 7 Workflow-Driven Design

Deconstructing a single workflow transition, which corresponds to
a single user request, into the above design steps is not a trivial
task for the process owner. For that reason, FORWARD will
enhance the design facility’s page-driven design with workflow-
driven design where all of the above design steps are integrated
into a single DIY task performed on the starting page of a
workflow transition.

Workflow-driven design is initially experienced by the owner as a
set of Workflow Actions components, shown on the right side
of Figure 7, which can be dragged-and-dropped on a page as any
other component. For the solicit example, the process owner
decides to drop the Route to Users component on the
Evaluate Startups page, which triggers the Create New
Action wizard. The wizard saves the owner from having to
formulate queries like the one above.

3.3.1 Workflow Wizard

The requirement for the workflow wizard is to either
automatically infer or ask the process owner about one or more of
the following properties of the workflow action (request) and
correspondingly of the transition that appears in the workflow
visualization:

1. The action on the current page that corresponds to the
workflow transition.

2. The type of record involved in the workflow action, which
can typically be automatically inferred from the context in
which the request was introduced

The user group that will be affected by the action.

How exactly the action will affect the rights of the user group
on the corresponding records. That is, will the action change
the access rights, the read rights and/or the action rights of
the affected user group on the target page. In most cases this
is implied by the choice of the action and no additional
information is needed.

5. Depending on the answer to the above question, additional
questions about the exact implementation of the rights
become relevant. For example, if the workflow action makes
the record readable by users of the affected group, which is
the page where the users will read the record?

6. How the affected user group will be notified of the action?

As an example, let us consider what the workflow wizard for the
Route to Users action should do, in the spirit of the above
properties, while the owner customizes the request to solicit
comments from advisors.

Property 1 is answered purely by the fact that the owner drags-
and-drops the Route to Users action from the Components list
(see Figure 7) into the page. Property 2 is inferred by the fact that
the owner dropped the workflow action in Evaluate Plans
page; therefore the type of record involved in the workflow action
is a Startup record. The wizard can proceed in a series of
questions. Property 3 comes from asking the owner to decide
which user group to route Startup records. The answer in the
running example is Advisors. Property 4 is implied by the choice
of the Route to Users action, whose effect is that the involved
record (Startup record) becomes readable by users of the chosen
group (Advisors). Property 5 comes from asking the owner
which is the page where Advisors will read Startup records;
the owner will answer that is a new page, named Advisor
Comments. Property 6 is addressed by a last question, where the
owner chooses to send an email to the relevant users of the
Advisors group.

Once the owner exits the wizard, the system automatically places
a solicit request in the context of each Startup, along with a
drop-down box that references the advisors, as shown in Figure 2.

3.4 Automated Report Creation

Section 3.2 has demonstrated how the high-level specification of
pages can generate a database schema, while Section 3.3 has
shown how raising the specification level to that of application
workflows can ease the design of requests. In keeping with this
high level of specification, it is desirable for owners to design
reports powered by complex queries, without having to specify
low-level implementation details of queries such as projections,
join conditions and selection conditions.

Since report pages are created after data collection pages the
automated report creation can leverage semantic information
previously specified by the owner. Consequently, the design
facility is able to provide the owner a minimal interface for
designing complex reports, while compensating for this
minimalism with algorithms that offer semantically meaningful
options and automate implementation details.

Let us consider how the owner can extend the Evaluate
Startups page with the comments that advisors have submitted
on Advisor Comments. Such an augmented Evaluate
Startups is shown in Figure 8b.

Figure 8a shows the WYSIWYG design of Evaluate Startups,
during which the owner selects the Report tab and sees options
for extending the page. For example, the first option corresponds
to extending Evaluate Startups with data on Advisor

Comments. The intuitive understanding is that selecting an option
will cause the system to produce a more complex report, which is
an amalgamation of both pages.

Evaluate Startups

g
1

Sobcitasoms | 4
Startp Mame iogo
a
a
o L O = a
TOURLL a -
o
=]
o
a
o
(@)
f' Extension ‘\
Evaiuaie Siariups [introduces |
i new i
N\ iniorinaioi g
0
——
[oiciaons
Seartan Mama Lama Amviens Camm:
Rous i =]
=
rabns — =
| facebook | o
o b=
[=!
E o
o
o
o
= S Larmy 4 gesgie com B
Vanlm =
TWHELLT o
St T =2
=
| =
o
o
(b)

Figure 8 Automated Report Extension on
Evaluate Startups Page

Figure 8b shows that after the above-mentioned option is selected,
the system has introduced advisor comments by extending the
Solicitations iterator’s unit with data collected by Advisor
Comments. Notice that the extension was placed at an optimal
point, next to corresponding solicitations.

Through the WYSIWYG interface (and appropriate sample data),
the owner receives immediate visual feedback of the extension.
She can then perform further customization, such as hiding
extraneous fields and iterators, deleting the extension and starting
over, or repeat the design activity of extending the page.

This minimal interface is intended to capture the common case of
designing reports. Sophisticated owners may choose to obtain
explanatory details for an option in order to customize join
conditions.

To enable this high degree of ease for the owner, the system has
employed various DIY features and heuristics. The technical
challenge lies in intelligently restraining the infinite space of all
possible joins, to produce a summarized enumeration of options
for the common case.

3.4.1 Generating Joins

When the owner selects the Report tab, the system produces the
list of options by first generating a (finite) list of join paths. This
is the core mechanism by which ultimately the owner chooses
from enumerated options, rather than specify join conditions using
arbitrarily complex Boolean conditions.

For each pair comprising an iterator b of the base page, (that is,
the report page to be extended - Evaluate Startups in the
example) and an iterator or a request e of any extension page,

app2you attempts to find join paths that connect b and e. A join
path is a left-deep relational join of the form:

FC(b) ... D¢, FC(i,) PXcyeq ... FC(e)
where FC(i) is the flat context of an iterator i.

Some example join paths between base iterators on the Evaluate
Startups page and extension iterators on the Advisor
Comments page are the following. For the sake of example,
assume the Advisor Comments page also shows the Founders.

1. FC(Evaluate_Startups)

P><[Ihs.startup_id = rhs.startup_ref]
FC(Founders)

2. FC(Evaluate_Startups)

P<[Ihs.startup_id = rhs.startup_ref]
FC(Advisor_Comments)

3. FC(Solicitation)

P<[lhs.startup_id = rhs.startup_ref
AND lhs.route_to = rhs.submitted_by]
FC(Advisor_Comments)

The flat context of an iterator i is its corresponding non-
parameterized query. If i is the top-level iterator of the page, then
FC(i) is simply the query producing the records displayed in i. If i
is nested within iterator h, then FC(i) is FC(h) appropriately
joined with the query producing the records displayed in i.

The join conditions ¢, are conjunctions of equalities between
attributes. Currently, the system considers two types of attribute
join-pairs: (1) between id attributes, and corresponding foreign
key attributes (2) between email attributes corresponding to user
groups, and Submitted By / Edited By attributes of records
accessible by said user groups. This reflects the common intuition
where the majority of join conditions involve unique identifiers,
be they surrogate keys generated by the database or natural keys
such as email addresses.

Note that the generated join paths do not contain cycles (i.e. an
iterator can only occur once in the path), otherwise there can be an
infinite number of paths. The exception is that b and e can be the
same iterator, so that the owner can make arbitrary self-joins by
choosing the same e for subsequent extension rounds.

3.4.2 Detecting Redundant Joins

The list of join paths generated is finite, but not all join paths are
useful enough to present as options to the owner. For each join
path, app2you makes a hypothetical extension of the base iterator,
and uses view equivalency to test whether the extension adds only
redundant information on the page.

For example, join path 1 is provably redundant and can be
discarded, since there is already a Founders iterator on the base
page Evaluate Startups.

A conservative definition of redundancy is the following: A join
path is redundant if it leads to a new iterator x, where there is
already an iterator y such that for all possible database instances
that satisfy the schema and its constraints, each tuple t,=(vy, ...,
Vy) in FC(x) has a corresponding tuple t, in FC(y) that has vy, ...,
v, and vice versa. We currently investigate additional definitions
of redundancy.

Note that such a definition does not prevent self-joins or, more
generally, reports where a database table occurs multiple times as
a result of different join conditions. The redundancy test is
accomplished by essentially reducing all constraints into

embedded dependencies, asserting the existence of t, in FC(x) and
running a chase procedure (similar to [15]) that deduces tuples
that must exist in the flat contexts of other iterators on the page.

3.4.3 Optimizing Join Placement

Given two generated join paths where the extension iterators are
the same, one join path may be strictly better than the other. For
example, contrast Join path 2 with 3. Extending Evaluate
Startups with 2 will place advisor comments on each startup,
whereas 3 will place advisor comments on each solicitation.
Intuitively, 3 is preferable to 2, as only the former visualizes the
existing association between a solicitation to a specific advisor,
and the corresponding comment.

This intuition can be expressed as functional dependencies
between records. A startup can be routed at most once to each
advisor, and an advisor can comment at most once on each
startup. Therefore, a comment functionally determines a
solicitation, which in turn functionally determines a startup. Since
app2you relies heavily on WYSIWYG visualization to assist the
owner in making design choices, it is important that wherever
possible, functional dependencies and other constraints in the
schema be visualized with the appropriate placement and nesting
of iterators. Extending with 3 will produce a more accurate
visualization of the functional dependencies.

Implementation-wise, running the chase procedure in Section
3.4.2 has the side benefit of also producing the necessary
functional dependencies.

3.4.4 Bundling Additional Joins

After discarding pruned join paths, the surviving ones are
aggregated by the pages of the extension iterators, and presented
as a list of options as in Figure 8a. This achieves the minimal
interface with a corresponding high-level of specification, as the
owner only needs to comprehend pages (and not join paths) to
start creating complex reports.

Note that the system uses the page rather than the iterator as the
level of summarization. This comes from the observation that due
to the parameterization between nested iterators, the standalone
functionality of an iterator is harder to perceive than that of a
page. Moreover, the existence of a report page is a strong hint that
its structural organization is useful. Therefore, bringing in the
entirety of the page en masse as part of the extension and allowing
the owner to later hide extraneous fields and iterators provides
better visual cues, than allowing the owner to extend one iterator
at a time.

For an example, consider an alternate scenario where startups can
provide rebuttals to advisor comments. There will be a page
Rebut Advisor Comments, that reports comments and annotates
them with a Rebuttal iterator. If Evaluate Startups were not
extended with Advisor Comments, but were instead extended
with Rebut Advisor Comments, the bundling of additional joins
will introduce both comments and rebuttals with a single round of
extension.

3.4.5 Visualizing Projections

Iterators and fields can be easily shown and hidden with
checkboxes (Figure 8b). For example, each iterator has a few
hidden-by-default system fields, such as Submit Timestamp. The
owner can easily customize the new Advisor Comments iterator
to display when each advisor submitted her comment. From the
DIY perspective, it is far preferable for the owner to toggle
visibility of iterators and fields through an enumerated list, than to
manually specify a projection list of attributes (a la query
languages such as SQL).

4. RELATED WORK

The time is opportune for Do-lt-Yourself database-driven
applications for two reasons. First, they leverage the emergence of
hosted applications (software as a service) and Web 2.0 Ajax-
based interfaces that allow application page design from the
comfort of one’s browser, while providing the richness of desktop
interfaces. The two aspects combine to remove the hassles of (i)
downloading/installing software in order to create an application
and (ii) deploying/exporting an application on the web. But the
Do-It-Yourself ability presents a larger, qualitatively-different
challenge: How to disrupt conventional database-driven web
application programming by providing brand new models of
specifying database-driven web applications so that non-
programmer business owners can build their own applications.

Multiple systems support the fast creation of custom web
applications by removing the need to program in a complex
Turing-complete programming language, such as Java. WebML
[3] is a prime example of schema-driven application creation
(also see DeClarit [6], Oracle Express [14]). The creator starts by
designing the Entity-Relationship data model for her application.
Then it is easy to specify pages by putting together units that
accomplish typical functionalities of Web applications. For
example, a unit may report the data of an entity and utilize the
relationships of the data model to navigate to related entities. It is
reported [22] that the development and maintenance of WebML
applications led to 30% increased productivity with 46 distinct
applications maintained by 5 part-time, junior developers.

The emerging Do-It-Yourself custom application platforms
primarily target non-programmer process owners. A common
theme is that the owner does not need to create a database schema
in the abstract. Rather she builds forms, which automatically lead
to corresponding tables that are typically reported on the same
page. Such systems tend to be online databases [4][5][7][9] for
easy information sharing and collaboration, often delivering great
advantages over online spreadsheets, which are their main
competitor for structured information sharing®. However, the
resulting applications have a very limited scope (and business
logic): Users simply post and read structured data in the shared
space.

A next generation of Do-It-Yourself systems promises to go
beyond information sharing and to enable users to capture their
business processes by web applications. At a high level, these
enablers are either “MS Access online” [4][2] or customizable
vertical templates [18].

The “MS Access online” enablers allow users to create multiple
Do-It-Yourself online tables (having forms and reports to give
access to them). In the same spirit with MS Access, the reports
have to be fueled by queries where the user has explicitly
specified joins and selections. Finally, business logic and flow of
data from table to table is offered in the form of scripting
programming languages [12] or graphical languages [4] that allow
the user to describe series of insertions, deletions and updates and
the conditions under which they should happen. The adherence to
tables with separate forms and reports creates problems at both the
scope axis and the easy specification: The web applications we are
dealing with day-to-day are not mere collections of tables with a
report and a form for each table. A typical case is that the input
forms of a page typically operate within the context of reported
dynamic data and even within the context that prior pages create,

® yahoo Pipes [21] and IBM’s QEDWiki [8] represent high end versions
of the information sharing space, where data from multiple sources and
RSS feeds can be automatically integrated and presented online.

i.e., there is no artificial divide of “input only” and “report only”,
as is clearly evidenced by pages such as Evaluate Startups
and Advisor Comments. In addition to app2you, AppForge [2]
also solves this problem by allowing input forms in the context of
reports.

Another scope problem of “MS Access Online” is the inability to
capture that access rights to a page may depend on the business
logic itself. For example, in the TC50 application the group
“Invited Applicants” is derived automatically and controls access
to “Schedule an Appointment”.

The “MS Access online” class is problematic in creating
workflow application since the business process owner needs to
reduce the collaborative process she has in her mind into
normalized tables and into sophisticated queries and updates. For
example, we showed in Section 3.3 how hard it is to explain using
a query that the Advisor Comments should only show startup
submissions that have been passed to the currently logged-in user.
This raises the bar of sophistication needed by the builders
towards the level of sophistication that programmers have,
therefore seriously limiting who can create and evolve
applications. The anecdotal evidence behind this thesis is plenty:
Instructors of undergraduate database classes know the difficulty
that, even computer science students, have in designing
appropriate schemas and writing non-trivial queries. Furthermore,
despite the best efforts of tools, such as the tools of the Microsoft
Office Access and Microsoft InfoPath, to make database schema
design and query writing approachable by the masses, the general
public has found it hard to engage in those activities. The above
evidence is not surprising since database schemas and queries are
abstract structures that have no immediately visible connection to
the web application and workflow aspects that the non-
sophisticated designer can immediately associate with, which are
the Web pages with which the users of the application will be
interacting.

Applications with fixed workflow and database table structure and
customizable input form structure (i.e., one can change the
attributes of tables as long as the tables and their interactions
remain fixed) have been a great success [18]. We believe that
customization does not need to stop at that point since, by doing
so, the scope of available applications is limited by the available
initial templates.

5. REFERENCES

[1] Jeanette Borzo: Do-It-Yourself Software, Wall Street
Journal, 9/24/2007.
http://online.wsj.com/article/SB119023041951932741.html#
articleTabs%3Darticle.

[2] Chavdar Botev, Nitin Gupta, Jayavel Shanmugasundaram,
Fan Yang: A WYSIWYG Development Platform for Data
Driven Web Applications. VLDB 2008.

[3] Stefano Ceri, Piero Fraternali, Aldo Bongio: Web Modeling
Language (WebML): a modeling language for designing
Web sites. Computer Networks 33(1-6): 137-157 (2000).

[4] Coghead. http://www.coghead.com
[5] DabbleDB. http://www.dabbledb.com
[6] DeKlarit. http://www.deklarit.com
[7]1 eUnifyDB. http://www.eunifydb.net

[8] 1BM QEDWiki.
http://services.alphaworks.ibm.com/gedwiki/

[9] Intuit Quickbase. http://www.quickbase.com

[10] JavaServer Pages Technology
http://java.sun.com/products/jsp/index.jsp

[11] K.W. Ong, Y. Papakonstantinou, K.K Zhao: Do-It-Yourself
Forms-Driven & Workflow Database-Driven Applications.
Provisional patent submitted by University of California at
San Diego, December 2008.

[12] LongJump. http://longjump.com
[13] Ning. http://www.ning.com

[14] Oracle Application Express.
http://www.oracle.com/technology/products/database/applica
tion_express/index.html

[15] Y. Papakonstantinou, I. Katsis, K. Ong: Creating Hosted
Web Application and database. Utility patent submitted by
University of California at San Diego, April 2007

[16] Lucian Popa, Alin Deutsch, Arnaud Sahuguet, Val Tannen:
A Chase Too Far? SIGMOD Conference 2000: 273-284.

[17] Ruby on Rails. http://www.rubyonrails.org/
[18] Salesforce.com. http://www.salesforce.com
[19] TechCrunch50 (TC50). http://techcrunch50.com

[20] Colin Teubner and Ken Vollmer: BPMS Revenue To Reach
$6.3 Billion By 2011. Forrester Research, 2007.
http://db.ucsd.edu/app2you/2009-www/2007-forrester-
bpms.pdf

[21] YYahoo! Pipes. http://pipes.yahoo.com/pipes/

[22] Piero Fraternali, Stefano Ceri, Massimo Tisi: Developing
eBusiness solutions with a Model Driven Approach. IMP
2006.

Appendix

More than twenty forms-driven applications have been built and
used in 2008 on app2you.com. For example, a recruiter has
collected job openings from its customers. A wide group of users,
defined and controlled by the recruiter, sees selected fields of the
job openings’ records and is invited to recommend individuals,
who are notified about the positions, provide their level of interest
and proceed to exchange information with the customer and the
recruiter if interested.

In another example, the United Cerebral Palsy non-profit
organization maintains an online loan library of toys, keeping
track of who currently holds a toy and who has requested it.

In multiple variations of classroom management applications
students submit their projects, often after a phase where they have
teamed up in project teams. The TAs and instructor provide
feedback and grade. Variations include setting up appointments
for project presentations and rehearsals, voting for the best project
etc.

In multiple variations of reviewing applications, candidates submit
material that is pushed thru a review process with various rules
and steps.

