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SUMMARY

Completion of DNA replication after replication
stress depends on PCNA, which undergoes monou-
biquitination to stimulate direct bypass of DNA
lesions by specialized DNA polymerases or is polyu-
biquitinated to promote recombination-dependent
DNA synthesis across DNA lesions by template
switching mechanisms. Here we report that the
ZRANB3 translocase, a SNF2 family member related
to the SIOD disorder SMARCAL1 protein, is recruited
by polyubiquitinated PCNA to promote fork restart
following replication arrest. ZRANB3 depletion in
mammalian cells results in an increased frequency
of sister chromatid exchange and DNA damage
sensitivity after treatment with agents that cause
replication stress. Using in vitro biochemical assays,
we show that recombinant ZRANB3 remodels
DNA structures mimicking stalled replication forks
and disassembles recombination intermediates. We
therefore propose that ZRANB3 maintains genomic
stability at stalled or collapsed replication forks by
facilitating fork restart and limiting inappropriate
recombination that could occur during template
switching events.

INTRODUCTION

Genomic integrity is constantly challenged by DNA damage

either spontaneously generated or induced by environmental

sources such as UV, ionizing radiation (IR), and chemical agents

(Ciccia and Elledge, 2010). During DNA replication, DNA lesions

can lead to the blockage or collapse of replication forks, thus

resulting in the accumulation of extensive single-strand DNA

(ssDNA) regions associated with the RPA complex (Byun et al.,
396 Molecular Cell 47, 396–409, August 10, 2012 ª2012 Elsevier Inc.
2005). RPA can act as a loading platform for the recruitment of

factors involved in activation of the DNA damage response,

stabilization of stalled/collapsed replication forks, and subse-

quent restart of DNA synthesis (Ciccia and Elledge, 2010).

To restart stalled/collapsed forks, RPA directly recruits the

SMARCAL1 translocase and interacts at forks with the RecQ

helicases BLM, WRN, and the Fanconi Anemia FANCM/

FAAP24 complex (Bachrati and Hickson, 2008; Bansbach

et al., 2009; Ciccia et al., 2009; Huang et al., 2010; Postow

et al., 2009; Yuan et al., 2009; Yusufzai et al., 2009).

The DNA polymerase sliding clamp PCNA can also function as

a loading platform to recruit DDR factors that allow completion of

DNA replication after DNA damage and promote postreplication

repair (Moldovan et al., 2007). Following induction of replication

stress, PCNA arrested at DNA lesions is monoubiquitinated by

the RAD6/RAD18 ubiquitin ligase complex (Bergink and Jentsch,

2009). Monoubiquitinated PCNA can recruit translesion (TLS)

polymerases, which are able to synthesize across DNA lesions

in a potentially error-prone manner (Sale et al., 2012). An error-

free pathway exists and requires Lys63 (K63)-linked polyubiqui-

tination of PCNA, which is induced by UBC13/MMS2 in complex

with Rad5 in yeast or HLTF and SHPRH in mammalian cells (Unk

et al., 2010). This pathway, also known as template switching,

employs recombination mechanisms to synthesize across the

lesion, using as a template the undamaged, newly synthesized

strand of the sister chromatid (Branzei, 2011).

Current models propose fork reversal or strand invasion as

possible mechanisms employed by template switching to allow

bypass of DNA lesions at replication forks. Fork reversal has

been suggested to promote the annealing of the arrested DNA

strand with the undamaged strand of the sister chromatid, thus

allowing the blocked strand to restart DNA synthesis, whereas

strand invasion could mediate the bypass of DNA lesions

through the formation of sister chromatid junctions (Atkinson

and McGlynn, 2009; Branzei, 2011). Sister chromatid junctions

resemble double Holliday junctions, which during mitosis are

primarily dissolved by the BLM/TOPOIIIa complex to prevent

the formation of crossover events between sister chromatids,
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also known as sister chromatid exchanges (SCEs) (Wu and

Hickson, 2003). Elevated crossover events are potentially dele-

terious since they can lead to chromosomal alterations and

cause loss of heterozygosity (LOH), which can uncover recessive

tumor suppressor mutations and predispose to cancer forma-

tion, as in Bloom syndrome patients carrying BLM mutations

(Bachrati and Hickson, 2008).

The observation that deletions of genes involved in postrepli-

cation repair, such as RAD18 and the ATPaseWRNIP1, increase

SCE frequencies suggests that template switching events may

limit inappropriate recombination events at replication forks

(Hayashi et al., 2008; Szüts et al., 2006; Tateishi et al., 2003). In

yeast Rad18, Rad5 and polyubiquitinated PCNA can regulate

template switching in conjunction with SUMOylated PCNA,

which recruits the antirecombinase helicase Srs2 to suppress

hyper-recombination at stalled replication forks (Branzei et al.,

2008; Ulrich andWalden, 2010). In higher eukaryotes, the protein

PARI has recently been shown to inhibit recombination following

its association with SUMOylated PCNA in a manner similar to

Srs2 (Moldovan et al., 2012). However, the role of PCNA polyu-

biquitination in regulating template switching events in higher

eukaryotes to promote completion of DNA replication and

prevent inappropriate recombination after replication stress is

currently unknown. Moreover, no proteins have yet been shown

to associate with polyubiquitinated PCNA in mammalian cells.

In this study we report that polyubiquitinated PCNA recruits

the ZRANB3 translocase, also known as AH2, to sites of replica-

tion stress to promote genomic stability. ZRANB3 depletion

leads to increased formation of SCEs and enhanced sensitivity

to DNA damaging agents that cause replication stress. More-

over, we show that ZRANB3 promotes fork restart following

replication arrest by associating with polyubiquitinated PCNA.

In agreement with these observations, ZRANB3 catalyzes the

regression of DNA substrates that mimic stalled replication forks

and disassembles D loop recombination intermediates in vitro.

Altogether, these data allow us to propose that ZRANB3 cooper-

ates with polyubiquitinated PCNA to maintain genomic stability

and prevent inappropriate recombination that could take place

during template switching events at sites of replication stress.

RESULTS

ZRANB3 Is Recruited to Sites of DNA Damage
in a PCNA-Dependent Manner
ZRANB3 is a member of the SNF2 family of proteins related

to the SIOD disorder protein SMARCAL1 (Flaus et al., 2006;

Yusufzai and Kadonaga, 2010). The similarity between ZRANB3

and SMARCAL1 is confined to their helicase domains, which

share 44% identity (Figure 1A and Figure S1). Distinct from

SMARCAL1, ZRANB3 possesses an NPL4 zinc finger (NZF)

and an HNH nuclease motif (Figure 1A) (Flaus et al., 2006). The

function of the HNH motif of ZRANB3 is currently unknown,

and no nuclease activity has been reported for ZRANB3 (Yusuf-

zai and Kadonaga, 2010).

To test whether ZRANB3 could be recruited to DNA damage

sites like SMARCAL1, U2OS cells expressing GFP-tagged

ZRANB3 were microirradiated with a UV-A laser following

treatment with BrdU, which undergoes UV-mediated photolysis
Mo
and facilitates the formation of DNA breaks at sites of laser irra-

diation. As shown in Figure S2A, GFP-ZRANB3 is recruited

to laser-generated stripes, where it colocalizes with the

DNA damage marker gH2AX. GFP-ZRANB3 localization to

laser-generated stripes peaks between 5 and 15min after micro-

irradiation, diminishes by 30 min, and disappears by 1 hr postir-

radiation. In contrast, the association of GFP-SMARCAL1 to

laser-generated stripes peaks 30 min following microirradiation,

but is still prominent 1 hr postirradiation (Figure S2B). These

observations suggest that ZRANB3 and SMARCAL1 are re-

cruited to DNA damage sites by distinct mechanisms.

SMARCAL1 recruitment to DNA damage is dependent on an

RPA2 interaction motif located in the first 31 amino acids of

SMARCAL1 (Bansbach et al., 2009; Ciccia et al., 2009; Postow

et al., 2009; Yuan et al., 2009; Yusufzai et al., 2009). ZRANB3

does not contain RPA interaction motifs and does not associate

with RPA (Yusufzai and Kadonaga, 2010). However, based on

similarity searches, we discovered that ZRANB3 possesses

two putative PCNA interaction motifs, the PCNA-interacting

protein (PIP) box (amino acids 519–526) and the AlkB homolog

2 PCNA-interaction motif (APIM) (amino acids 1070–1077),

which have been shown to mediate the recruitment of repair

factors to DNA damage sites in a PCNA-dependent manner (Fig-

ure 1B) (Ciccia and Elledge, 2010). Whereas the amino acid

sequence of the PIP box is well characterized, the APIM motif

is determined by a shorter and more variable consensus

sequence (Gilljam et al., 2009). To determine if the putative

APIM motif of ZRANB3 could be recruited to sites of DNA

damage, we generated U2OS cells expressing a C-terminal frag-

ment of GFP-ZRANB3 containing the APIM motif (GFP-APIM,

amino acids 1049–1077) fused to an NLS sequence. Following

UV microirradiation, we observed that GFP-APIM localized to

laser-generated stripes, while a GFP-APIM mutant harboring

a single mutation in a highly conserved phenylalanine residue

(F1073) of the APIM motif important for PCNA interaction was

defective in localization to DNA damage sites, suggesting that

GFP-APIM recruitment depends on an intact APIMmotif (Figures

S2C and S2D) (Gilljam et al., 2009). SiRNA depletion of PCNA

greatly decreased the recruitment of GFP-APIM to laser stripes,

further supporting the conclusion that PCNA mediates the

localization of GFP-APIM to DNA damage sites (Figures S2C

and S2D).

To determine if PCNA promotes the recruitment of full-length

ZRANB3 to sites of DNA damage, we generated U2OS cells

expressing GFP-ZRANB3mutants containing PIP boxmutations

(PIP mutant) or a deletion of the APIM motif (APIM mutant).

Following UV microirradiation, we observed that both individual

GFP-ZRANB3 PIP and APIM mutants had impaired recruitment

to laser-generated stripes (Figure 1C). PIP or APIM mutant

GFP-ZRANB3 formed stripes in approximately 5% of UV-irradi-

ated cells, whereas GFP-ZRANB3with both PIP and APIMmuta-

tions was completely defective in recruitment, indicating that the

PIP and APIM motifs are both important for localization but can

partially compensate for each other (Figure 1D). GFP-ZRANB3

displayed impaired recruitment after PCNA siRNA depletion,

indicating that ZRANB3 localizes to sites of DNA damage in

a PCNA-dependent manner, as predicted by the phenotype of

the PIP and APIM mutants (Figures 1C and 1D).
lecular Cell 47, 396–409, August 10, 2012 ª2012 Elsevier Inc. 397



Figure 1. PCNA-Dependent Recruitment of ZRANB3 to DNA Damage Sites

(A) Schematic representation of the protein domains of SMARCAL1 and ZRANB3. The helicase domains are indicated in red.

(B) Sequence alignments of the PIP box (left) and APIM (right) motifs of ZRANB3 with known PIP box and APIM motifs of other PCNA-interacting proteins. The

amino acids of the PIP box and APIM motifs that have been mutated are indicated by arrows.

(C) Localization ofWT ormutant GFP-ZRANB3 toDNA damage sites generated byUV-lasermicroirradiation. U2OS cells expressingWTGFP-ZRANB3 are shown

with or without PCNA siRNA treatment prior to UV microirradiation.

(D) Graphical representation of the percentage of U2OS cells that display colocalization of GFP-ZRANB3 with gH2AX at laser-generated stripes. The data

represent the average and standard deviation of three independent experiments performed on cells expressing the GFP constructs shown in (C).

Molecular Cell

Ub-PCNA Binds ZRANB3 to Promote Genomic Stability

398 Molecular Cell 47, 396–409, August 10, 2012 ª2012 Elsevier Inc.



Figure 2. Interaction of ZRANB3 with Ubiquiti-

nated PCNA In Vitro

(A) Sequence alignment of the NZF motifs of ZRANB3,

TAB2, TAB3, ZRANB1, and RANBP2. Residues involved in

the binding of proximal and distal ubiquitin binding sites,

as described in (Kulathu et al., 2009), are within green and

blue boxes, respectively. NZF motif residues that have

been mutated are indicated.

(B) Association of K63-linked ubiquitin chains with the

ZRANB3 NZF motif. GST-ZRANB3 containing a WT or

mutant NZF motif were affinity purified from bacteria and

incubated with monoubiquitin or ubiquitin chains linked on

lysine 48 (K48) or lysine 63 (K63). Complexes were de-

tected with anti-ubiquitin and anti-GST antibodies after

western blotting.

(C) Association of ZRANB3 with ubiquitinated PCNA. WT

or mutant FLAG-ZRANB3 was immunoprecipitated with

anti-FLAG beads from insect cells and incubated with

a mixture of unmodified, monoubiquitinated, and poly-

ubiquitinated PCNA. Immunoprecipitated PCNA and

FLAG-ZRANB3 were detected by western blotting.
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During DNA replication and repair, PCNA accumulates in focal

structures indicative of sites of DNA synthesis. To test whether

ZRANB3 colocalizes with PCNA in these structures, U2OS cells

expressing HA-tagged ZRANB3 were treated with a variety of

DNA damaging agents and then costained with antibodies

against HA-ZRANB3 and PCNA. In untreated cells HA-ZRANB3

displayed weak colocalization with PCNA in larger foci typical of

late S phase replication factories (Figure 1E and Figure S3A). This

colocalization was greatly enhanced by treatment with agents

that induce replication stress, such as hydroxyurea, camptothe-

cin, mitomycin C, cisplatin, and UV radiation (Figure 1E and

Figure S3A).

The recruitment of many DDR factors to DNA damage sites is

positively regulated by posttranslational modifications induced

by the PI3K-related kinases (PIKKs) ATM and ATR (Ciccia and

Elledge, 2010). To test if the recruitment of ZRANB3 to DNA

damage sites was mediated by PIKKs, U2OS cells expressing

HA-ZRANB3 were UV irradiated in the presence of caffeine,

a known PIKK inhibitor. Rather than preventing ZRANB3 recruit-

ment, caffeine treatment increased the formation of ZRANB3 foci

following UV radiation (Figure 1E and Figure S3). Similar results

have been obtained by treating UV-irradiated cells with ATM

and ATR inhibitors, further suggesting that the recruitment of

ZRANB3 to DNA damage sites can occur under conditions of

reduced ATM and ATR activities (Figure S3).

Since ZRANB3 colocalizes with PCNA, we tested whether this

association was direct. Purified PCNA was incubated with

recombinant FLAG-ZRANB3 bound to anti-FLAG beads. As
(E) Colocalization of ZRANB3 with PCNA. U2OS cells expressing HA-ZRANB3 w

treatment. Cells subjected to UV radiation were also treated with caffeine (2 mM

(F) Immunoprecipitation of FLAG-ZRANB3 with PCNA. FLAG-ZRANB3 either WT

FLAG beads and then incubated with recombinant PCNA. Immunoprecipitated c

Mo
shown in Figure 1F, WT but not the double PIP and APIMmutant

ZRANB3 associated with PCNA. Thus, ZRANB3 directly associ-

ates with PCNA through the PIP box and/or APIM motifs.

ZRANB3 Preferentially Associates with
Polyubiquitinated PCNA
Following treatment with DNA damaging agents that induce

replication stress, PCNA is subjected to monoubiquitination

and K63-linked polyubiquitination to promote TLS and template

switching, respectively (Ulrich andWalden, 2010). These modifi-

cations serve as a signal for the recruitment of DDR factors con-

taining ubiquitin-binding modules. Monoubiquitinated PCNA is

recognized by TLS polymerases through ubiquitin binding zinc

fingers (UBZ) or ubiquitin binding motifs (UBM) (Sale et al.,

2012). In contrast, mammalian proteins able to bind polyubiqui-

tinated PCNA and promote template switching have not yet been

identified.

Bioinformatic analyses have revealed that the zinc finger of

ZRANB3 is related to the NPL4 zinc finger (NZF) of the ubiquitin

binding proteins TAB2 and TAB3, which associate with ubiquiti-

nated components of NF-kB pathway (Figure 2A) (Kulathu et al.,

2009). A NZF motif has also been identified in the APC deubiqui-

tinase ZRANB1 and in the SUMO ligase RANBP2, among others

(Figure 2A) (Alam et al., 2004; Kulathu et al., 2009). Whereas the

NZF motif of TAB2, TAB3, and ZRANB1 binds ubiquitin though

a conserved TY/F motif (T674, F675 in TAB2), the NZF motif of

RANBP2 does not associate with ubiquitin, due to the diver-

gence of the TY/F motif to LV (L1489, V1490) (Figure 2A, blue
ere left untreated or subjected to hydroxyurea (2 mM) or UV radiation (25 J/m2)

). Cells were stained with anti-HA (green) and anti-PCNA (red) antibodies.

or mutated in the PIP and APIM motifs was purified from insect cells with anti-

omplexes were detected by western blotting.

lecular Cell 47, 396–409, August 10, 2012 ª2012 Elsevier Inc. 399



Figure 3. Association of ZRANB3 with Ubiquitinated PCNA in Mammalian Cells

(A) Association of ZRANB3 with PCNA after DNA damage. Protein complexes from U2OS cells expressing WT or mutant HA-ZRANB3 were crosslinked and

immunoprecipitated with an anti-PCNA antibody ± UV radiation (30 J/m2) and caffeine (2 mM). ZRANB3 and PCNA were detected with anti-HA and anti-PCNA

antibodies. The fold change of immunoprecipitated HA-ZRANB3 is indicated.

(B) Depletion of USP1 increases the association of ZRANB3with PCNA. 293T-Rex cells expressing FLAG-ZRANB3 were treated with control or USP1 siRNA prior

to UV (30 J/m2) and caffeine (2 mM) treatment. Protein complexes were crosslinked, immunoprecipitated with an anti-PCNA antibody, and immunoblotted with

anti-FLAG and anti-PCNA antibodies. The fold change of immunoprecipitated FLAG-ZRANB3 is indicated.

(C) Interaction of ZRANB3with ubiquitinated PCNA inmammalian cells. U2OScells expressing FLAG-ZRANB3were treatedwithUSP1 siRNAprior toUV (30 J/m2)

and caffeine (2 mM) treatment. Protein complexes were subjected to anti-FLAG immunoprecipitation after crosslinking and then detected by western blotting.

(D) Graphical representation of the percentage of cells that display colocalization of HA-ZRANB3, eitherWT or NZFmutant, with gH2AX at laser-generated stripes

following treatment with siRNAs targeting RAD18, UBC13, or USP1. The time after microirradiation in which the samples were fixed is indicated. The data

represent the average and standard deviation of three independent experiments.
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box) (Alam et al., 2004). The NZF motifs of ZRANB1, TAB2, and

TAB3 have been shown to associate with K63-linked polyubiqui-

tin chains (Komander et al., 2009; Kulathu et al., 2009; Tran et al.,

2008). In particular, ZRANB1 possesses multiple NZFs, each of

which is able to bind a single ubiquitin moiety of the ubiquitin

chain (Tran et al., 2008). In contrast, TAB2 and TAB3 contain

single NZF motifs that can simultaneously bind two ubiquitin

moieties (two-sided NZF motif), due to the presence of amino

acid residues important for a second ubiquitin binding site

(H678, L681, E685 in TAB2) in addition to the TY/F motif forming

the first ubiquitin binding site (Figure 2A, blue and green boxes)

(Kulathu et al., 2009). Like TAB2 and TAB3, ZRANB3 is likely to

possess a two-sided NZF motif based on the conservation of

residues required for the formation of two ubiquitin binding sites

(T631, Y632, N635, L638, E642) (Figure 2A, blue and green

boxes) (Kulathu et al., 2009). This, in principle, should provide

polyubiquitin chain type specificity. To test this prediction, gluta-

thione beads bound to a GST-tagged fragment of ZRANB3

containing the NZF motif (amino acids 500–800) were incubated

with either free ubiquitin or K48- or K63-linked ubiquitin chains

in vitro. The NZF motif of ZRANB3 preferentially associated

with K63-linked ubiquitin chains (Figure 2B). This interaction

was disrupted by mutating the ubiquitin binding site formed by

the TY/F motif to LV, as in the nonubiquitin binding protein

RANBP2, thus indicating that the interaction with ubiquitin

chains depends on a functional NZF motif (Figures 2A and 2B).

Given that ZRANB3 possesses both PCNA interaction motifs

and K63-linked ubiquitin chain binding motifs, we wondered

whether ZRANB3 might preferentially bind polyubiquitinated

PCNA. To this end, recombinant PCNA was ubiquitinated

in vitro and mixed with unmodified PCNA. This PCNA mixture

was then incubatedwith anti-FLAGbeads bound to recombinant

FLAG-ZRANB3. As shown in Figure 2C, ZRANB3 displayed

significantly higher affinity toward the polyubiquitinated forms

of PCNA compared to monoubiquitinated or unmodified

PCNA. Mutation of the NZF motif severely impaired the ability

of ZRANB3 to bind ubiquitinated forms of PCNA, indicating

that the NZF motif is important for this interaction (Figure 2C).

In the context of the entire ZRANB3 protein, the presence of

the NZF domain is not sufficient to allow association of ZRANB3

with ubiquitinated forms of PCNA, because the double PIP and

APIM mutant of ZRANB3 is completely defective for binding all

forms of PCNA. Thus it appears that the PIP and APIM motifs

provide an interaction surface required for the association of

the NZF motif with the polyubiquitin chains on PCNA, and it is

likely that all three work cooperatively to bind polyubiquitinated

PCNA (Figure 2C).

The ubiquitin binding motif of TLS polymerases, such as polh,

has been suggested to facilitate their recruitment to DNA

damage sites (Bienko et al., 2005; Plosky et al., 2006). To test

if the NZF motif of ZRANB3 could promote the interaction with

PCNA after DNA damage, U2OS cells expressing WT ZRANB3
(E) Formation of GFP-ZRANB3 foci after depletion of USP1. U2OS cells were tre

(green) and PCNA, ubiquitinated proteins (FK2), and WRNIP1 or RAD18 (all in re

(F) Foci formation after USP1 siRNA treatment of U2OS cells expressing eitherWT

(green) and PCNA (red).

Mo
or ZRANB3 mutated in the PIP and APIM motifs or in the

NZF motif were untreated or treated with UV radiation in the

presence of caffeine, whichwas used to facilitate the recruitment

of ZRANB3 to damage sites, as discussed above. Protein

complexes were then crosslinked with formaldehyde and immu-

noprecipitated with an anti-PCNA antibody, after which cross-

links were reversed. As shown in Figure 3A, treatment with UV

and caffeine stimulated the association of WT ZRANB3 with

PCNA, and this stimulation was reduced more than 2-fold in

the NZF mutant ZRANB3, suggesting that the NZF motif

promotes the interaction between ZRANB3 and PCNA after

DNA damage.

To test if the association between ZRANB3 and PCNA after UV

radiation could be further stimulated by increasing the levels of

the ubiquitinated forms of PCNA, 293T-Rex cells expressing

FLAG-ZRANB3were treated with siRNAs targeting the deubiqui-

tinase USP1, which regulates the levels of mono- and polyubi-

quitinated forms of PCNA (Brun et al., 2010; Huang et al.,

2006; Yang and Zou, 2009). Following crosslinking and immuno-

precipitation of PCNA protein complexes, we observed that

USP1 depletion led to an approximately 2-fold increase in the

interaction of FLAG-ZRANB3 with PCNA after UV radiation and

caffeine treatment (Figure 3B). Moreover, USP1 siRNA depletion

promoted to the association of multiple ubiquitinated forms of

PCNA with FLAG-ZRANB3 following ZRANB3 immunoprecipita-

tion from U2OS cells after UV and caffeine treatment (Figure 3C).

However, mutation of the NZF motif of ZRANB3 led to defective

interaction with polyubiquitinated PCNA, further confirming our

in vitro interaction data.

ZRANB3 is transiently recruited to DNA damage sites showing

reduced localization to laser-induced stripes 30 min after micro-

irradiation (Figure 3D). Interestingly, USP1 siRNA depletion pre-

vented the dissociation of ZRANB3 from DNA damage sites and

led to the persistence of ZRANB3 stripes 30 min after microirra-

diation (Figure 3D and Figure S4B). Conversely, siRNA depletion

of RAD18 or UBC13 decreased the number of ZRANB3 stripes

without affecting the initial recruitment of ZRANB3 to DNA

damage sites (Figure 3D and Figures S4A and S4B). In agree-

ment with this, mutation of the NZF motif resulted in defective

retention of ZRANB3 to laser-induced stripes with or without

USP1 siRNA treatment (Figure 3D and Figures S4C and S4D).

The observation that the initial recruitment of ZRANB3 is not

significantly affected by depletion of RAD18 or UBC13 and by

mutation of the NZF motif suggests that ZRANB3 could be

initially recruited to DNA damage sites independently of PCNA

ubiquitination. The subsequent ubiquitination of PCNA by

RAD18 and UBC13 at sites of DNA damage could then provide

an additional interaction surface important for the retention of

ZRANB3.

In agreement with the results described above, depletion

of USP1 induced the formation of an extensive number of

spontaneous ZRANB3 foci that colocalized with PCNA and
ated with control or USP1 siRNA and stained with antibodies recognizing GFP

d), as indicated.

or NZFmutant HA-ZRANB3. Cells were stainedwith antibodies recognizing HA

lecular Cell 47, 396–409, August 10, 2012 ª2012 Elsevier Inc. 401
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ubiquitinated proteins (as detected by the FK2 antibody) (Fig-

ure 3E). Mutation of the NZF motif resulted in a 4-fold decrease

in the number of cells with spontaneous ZRANB3 foci colocaliz-

ing with PCNA after USP1 depletion, further suggesting that the

NZF motif is important for the association of ZRANB3 with ubiq-

uitinated PCNA (Figure 3F and Figure S4G). The spontaneous

ZRANB3 foci induced by USP1 depletion colocalized also with

WRNIP1 and RAD18 (Figure 3E). WRNIP1 is a RAD18- and

WRN-interacting ATPase, which associates with sites of replica-

tion stress and binds ubiquitinated proteins through a UBZ motif

(Bish and Myers, 2007; Crosetto et al., 2008; Kawabe et al.,

2006; Yoshimura et al., 2009). As shown in Figure S4H, WRNIP1

was identified in ZRANB3 immunoprecipitates following USP1

depletion in combination with UV and caffeine treatment. Inter-

estingly, Mgs1, the yeast ortholog of WRNIP1, has recently

been reported to associate with ubiquitinated PCNA (Saugar

et al., 2011). These observations suggest that both ZRANB3

and WRNIP1 may associate with polyubiquitinated PCNA.

ZRANB3 Prevents Sister Chromatid Exchange and
Promotes Fork Restart after Replication Stress
Since ZRANB3 associates with ubiquitinated forms of PCNA at

sites of replication stress, we tested whether ZRANB3 depletion

could sensitize cells to DNA damaging agents that arrest replica-

tion fork progression. To this end, U2OS cells transfected with

control or three independent ZRANB3 siRNAs were mixed with

control cells expressing GFP in a cell competition assay and

then subjected to treatment with camptothecin, hydroxyurea,

or cisplatin (Figure 4A) (Smogorzewska et al., 2007). ZRANB3

depleted cells displayed marked sensitivity to camptothecin

and milder sensitivity to hydroxyurea or cisplatin (Figure 4A).

SMARCAL1 depletion also sensitizes cells to replication stress

(Bansbach et al., 2009; Ciccia et al., 2009; Yuan et al., 2009).

To test whether ZRANB3 and SMARCAL1 cooperate in protect-

ing from replication stress, U2OS cells expressing either control

or SMARCAL1 shRNAs were transfected with control or

ZRANB3 siRNAs and then subjected to camptothecin treatment.

Cells depleted of both ZRANB3 and SMARCAL1 displayed addi-

tive sensitivity to camptothecin (Figure 4B). Similar results were

also obtained by using an additional ZRANB3 siRNA (data not

shown), suggesting that ZRANB3 and SMARCAL1 function inde-

pendently of each other.

Genomic stability after replication stress could be ensured by

regulating homologous recombination between sister chroma-

tids at stalled or collapsed replication forks. Recombination

between sister chromatids can result in crossover events, which

can be visualized on metaphase chromosomes as SCEs, or

noncrossover events mediated by gene conversion. In order to

determine if ZRANB3 could affect the outcome of such events,

U2OS cells treated with control or ZRANB3 siRNA were incu-

bated with BrdU for one round of DNA replication and subse-

quently subjected to MMC or camptothecin treatment during

the second cell cycle. Following isolation of mitotic chromo-

somes, exchanges between sister chromatids were visualized

with orange acridine staining, which differentially labels double-

stranded DNA with one or two BrdU-incorporated strands.

As indicated in Figures 4C and 4D, ZRANB3 depletion led to

increased frequencies of SCEs following MMC or camptothecin
402 Molecular Cell 47, 396–409, August 10, 2012 ª2012 Elsevier Inc.
treatment. The increase in SCE frequencies following treatment

with ZRANB3 siRNA was reversed by the expression of a

siRNA-resistant ZRANB3 cDNA (Figure 4C). Similar results

were obtained with two independent ZRANB3 shRNAs after

MMC treatment (Figures S5E–S5G). Statistically significant

increases in SCE frequencies were also observed in ZRANB3

siRNA depleted cells without treatment, suggesting that

ZRANB3 could also prevent the formation of SCEs during unper-

turbed DNA replication (Figure 4C). In agreement with these

data, ZRANB3 depletion resulted in an increased number of cells

with more than ten RAD51 foci after camptothecin treatment,

further indicating that ZRANB3 prevents inappropriate recombi-

nation after replication stress (Figure 4E and Figure S5D).

This increase was significantly reversed by the expression of

a siRNA-resistant clone expressing wild-type, but not PIP and

APIM or NZF mutant ZRANB3, suggesting a role for the interac-

tion between ZRANB3 and ubiquitinated PCNA in limiting RAD51

accumulation after camptothecin treatment (Figure 4E). Increase

in the number of cells with RAD51 foci was also observed after

SMARCAL1 depletion (data not shown), as previously reported

(Postow et al., 2009).

To test whether ZRANB3 depletion affects replication restart

after replication stress, we performed single DNA fiber analysis.

U2OS cells were pulse-labeled with the thymidine analog IdU for

25 min and subsequently incubated with hydroxyurea for 2 hr to

arrest replication fork progression. Following hydroxyurea

washout, cells were pulse-labeled with CldU, another thymidine

analog, for an additional 40 min, and DNA fibers were then

isolated and stained for IdU (red) and CldU (green) (Figure 5A).

Cells treated with ZRANB3 siRNA displayed an approximately

2-fold increase in the number of DNA fibers that had incorpo-

rated only Idu (red only tracts), indicating that ZRANB3

depletion leads to defective fork restart after replication arrest

(Figures 5B–5D). This defect could be reversed by the expres-

sion of a siRNA-resistant clone coding for wild-type ZRANB3

but not mutants in the PIP and APIM motifs or the NZF motif

(Figures 5B–5D). Altogether, these results suggest that ZRANB3

maintains genomic stability at stalled or collapsed replication

forks by promoting fork restart and limiting the formation of

crossover events.

ZRANB3 Remodels Replication Fork Structures
and Disassembles D Loop Intermediates
To determine the molecular mechanisms by which ZRANB3

could promote fork restart and limit crossovers, we purified

ZRANB3 from insect cells and performed in vitro assays using

DNA substrates mimicking replication and recombination DNA

intermediates (Figure 6A). It has been suggested that upon repli-

cation fork arrest at DNA lesions, regression of the replication

fork can lead to the annealing of the arrested DNA strand with

the newly synthesized strand of the sister chromatid, thus allow-

ing the blocked strand to restart DNA synthesis by template

switching (Atkinson and McGlynn, 2009; Unk et al., 2010). To

determine whether ZRANB3 promotes fork regression, we per-

formed helicase assays on synthetic replication fork structures

with homologous DNA strands. As shown in Figure 6B, ZRANB3

exhibited fork regression activity, which was abrogated by

a mutation in the helicase domain.



Figure 4. Effects of ZRANB3 Depletion in Mammalian Cells

(A) Cell competition assay in U2OS cells treated with control siRNAs or three independent ZRANB3 siRNAs following treatment with camptothecin (CPT, 5 nM),

hydroxyurea (HU, 2 mM), or cisplatin (CIS, 0.5 mM). The data represent the average and standard deviation of three independent experiments.

(B) Cell competition assay in U2OS cells expressing either control or SMARCAL1 shRNAs transfected with control or ZRANB3 siRNAs following treatment with

camptothecin (CPT, 5 nM). Error bars have been calculated as in (A).

(C) Graphical representation of the frequencies of sister chromatid exchanges (SCEs) of mitotic chromosomes isolated from U2OS cells transfected with control

or ZRANB3 siRNAwith or withoutmitomycin C (MMC, 20 nM) or camptothecin (CPT, 2.5 nM) treatment. The SCE frequencies of U2OScells expressing a ZRANB3

cDNA clone resistant to ZRANB3 siRNA treatment are indicated. The average frequencies of SCEs and the standard deviation are indicated. Statistically

significant p values calculated using the Mann-Whitney test are indicated by asterisks (*p < 0.05, ***p < 0.001). n.s., not significant.

(D) Chromosome spreads from U2OS cells transfected with control or ZRANB3 siRNA after camptothecin (CPT, 2.5 nM) treatment. SCEs are indicated.

(E) Percentage of U2OS cells transfected with control or ZRANB3 siRNAs displaying more than ten RAD51 foci. Cells were fixed 6 hr or 12 hr following 1 hr

camptothecin (CPT, 10 nM) treatment. The percentage of U2OS cells with more than ten RAD51 foci that expressed siRNA-resistant cDNA clones coding for

either WT, PIP and APIM, or NZF mutant ZRANB3 is also indicated. The data represent the average and standard deviation of three independent experiments in

which 100 or more cells were counted.
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Figure 5. DNA Fiber Analysis after ZRANB3

Depletion in Mammalian Cells

(A) Schematics of the pulse-labeling experiment

performed for DNA fiber analysis.

(B) Images of DNA fibers isolated from cells

treated with control or ZRANB3 siRNAs following

the expression of siRNA-resistant WT, PIP and

APIM, or NZF mutant ZRANB3. DNA fibers were

stained with antibodies that recognize IdU (red)

and CldU (green).

(C) Detection by Western blot of the ZRANB3

protein levels in the cells subjected to DNA fiber

analysis shown in (B).

(D) Graphical representation of the percentage of

stalled forks (red only tracts) from DNA fiber

analyses of the samples shown in (B). The data

represent the average and standard deviation of

three independent experiments.
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Stalled replication forks generally have asymmetric DNA

strands due to the uncoupling of leading- and lagging-strand

synthesis. To determine if ZRANB3 can regress replication forks

that more closely mimic stalled replication forks, we employed

a strategy that utilizes a previously developed plasmid-based

DNA substrate (Figure 6C) (Blastyák et al., 2007). In this assay,

a duplex DNA with a ssDNA tail is annealed to a gapped plasmid

to form a joint molecule that resembles a stalled fork. Regression

of the stalled fork can bemonitored by restriction digestion of the

50 labeled duplex DNA that is formed after annealing of the two

regressed strands. As shown in Figure 6D, ZRANB3 promotes

extensive regression of the replication fork, generating a re-

gressed arm longer than 450 bp. Similar results on the synthetic

fork structure and on the plasmid-based fork were also observed

for recombinant FLAG-SMARCAL1, indicating that SMARCAL1

possesses fork remodeling activity, as recently reported (Figures

6B–6D) (Bétous et al., 2012). Together, these data suggest that

ZRANB3 and SMARCAL1 could facilitate fork restart by remod-

eling stalled or blocked replication forks.

Suppression of SCEs by ZRANB3 after replication stress could

be mediated by disassembling recombination intermediates,

such as D loop structures, that are generated during the repair

of ssDNA gaps or DNA breaks formed at stalled replication forks.

To test this hypothesis, we first generated a D loop substrate

using RecA protein to assimilate a complementary 100-mer

ssDNA into supercoiled DNA (scDNA). The reaction was then

deproteinized, purified, and used to determine if ZRANB3

and SMARCAL1 can dismantle such structures. As shown in

Figures 7A and 7B, both ZRANB3 and SMARCAL1 were able
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to disrupt D loop structures in a manner

dependent on functional helicase

domains. In particular, SMARCAL1 ex-

hibited stronger activity than ZRANB3 in

magnesium-containing buffer, whereas

ZRANB3, but not SMARCAL1, was active

in calcium-containing buffer (Figures 7A

and 7B and Figure S6A). This suggests

that the helicase domains of ZRANB3
and SMARCAL1 could interact with divalent ions in a distinct

manner.

Having established that ZRANB3 and SMARCAL1 can disas-

semble purified D loops, we wondered whether the two proteins

possess a similar activity on RAD51 containing D loops. We

therefore generated D loops using human RAD51 (hRAD51)

and tested the effect of addition of ZRANB3 or SMARCAL1 to

an ongoing hRAD51-mediated D loop reaction (Figure 7C). As

shown in Figures 7D and 7E, ZRANB3 or SMARCAL1 promoted

disruption of D loops in a concentration-dependent manner. An

extended time course at fixed concentrations of the translocases

supported this observation (Figure 7E and Figures S6B and

S6C). SMARCAL1 exhibited more pronounced activity than

ZRANB3 under these conditions (compare Figures 7A and 7B

to Figures 7D and 7E and Figures S6B and S6C). These reactions

were performed in the presence of both magnesium and

calcium, which is known to stabilize RAD51 filaments by inhibit-

ing RAD51 ATPase activity (Bugreev and Mazin, 2004). Consis-

tent with previous observations, BLM did not dissociate D loop

structures under these reaction conditions (Figure 7E) (Barber

et al., 2008; Bugreev et al., 2007).

To investigate whether ZRANB3 and SMARCAL1 could

prevent the formation of D loop structures, ZRANB3 and

SMARCAL1 were incubated with hRAD51 nucleoprotein fila-

ments in the presence of magnesium and calcium before the

addition of scDNA for 10 min prior to termination of the reaction

(Figure 7F). Interestingly, ZRANB3, but not SMARCAL1, de-

creased the efficiency of D loop formation (Figures 7G–7I). Given

that ZRANB3 does not appear to directly disrupt hRAD51



Figure 6. Fork Regression Activities of

ZRANB3 and SMARCAL1

(A) Purification of FLAG-ZRANB3 and FLAG-

SMARCAL1 from insect cells. WT and helicase-

dead (HD) mutant proteins were subjected to CM

Sepharose chromatography, affinity purified with

anti-FLAG beads, and eluted with FLAG peptide.

The eluates were analyzed by SDS-PAGE and

visualized by Coomassie.

(B) Regression of synthetic fork substrates using

ZRANB3 and SMARCAL1. 32P-labeled fork

substrates were incubated with WT and mutant

proteins in a time course reaction. DNA products

were then analyzed by gel electrophoresis and

visualized by autoradiography. The position of the
32P-labels on the DNA substrates is indicated by

circles.

(C) Schematic representation of the plasmid-

based assay employed in (D). 32P labels are indi-

cated by circles.

(D) Regression of plasmid-based replication forks

by ZRANB3 and SMARCAL1. Following incuba-

tion with ZRANB3 or SMARCAL1, fork structures

were digested with restriction enzymes that

cleave the dsDNA generated by annealing of the

regressed DNA strands. DNA products of the

restriction digests were analyzed by gel electro-

phoresis and visualized by autoradiography.
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filaments on ssDNA (Figure S6D), we propose that this activity

of ZRANB3 could be due to unwinding of the initial intermedi-

ates of strand invasion. Taken together, these data suggest

that ZRANB3 and SMARCAL1 could suppress inappropriate

recombination by either preventing or disrupting D loop

intermediates.

DISCUSSION

The ability of cells to properly restart stalled or collapsed replica-

tion forks and limit inappropriate recombination after replication

stress is critical to the survival of the organism. Limiting cross-

over events between homologous chromosomes prevents

reduction to homozygosity, which can uncover recessive tumor

suppressor mutations leading to cancer. In this study we discov-

ered that the ZRANB3 translocase is recruited to sites of replica-

tion stress by polyubiquitinated PCNA to promote genomic

stability by facilitating replication restart and limiting exchanges

between sister chromatids. ZRANB3 contains two distinct PCNA

interaction motifs, the PIP box and APIMmotifs. Both are critical

for the localization of ZRANB3 to sites of DNA damage, suggest-

ing that they cooperate with each other in mediating the interac-

tion with PCNA. ZRANB3 also contains a NZF zinc finger that

preferentially binds K63-linked polyubiquitin chains and is

required for efficient association with PCNA after DNA damage.

Thus all three motifs of ZRANB3 contribute to localization to

polyubiquitinated PCNA in response to DNA damage. This is

reminiscent of the ability of the PIP box and UBM/UBZ motifs

of TLS polymerases to cooperatively interact with monoubiquiti-

nated PCNA (Bienko et al., 2005; Plosky et al., 2006). In the case

of ZRANB3, the PIP and APIM motif of ZRANB3 appear to play

a primary role in the initial recruitment of ZRANB3 to DNA
Mo
damage sites, whereas the NZF motif provides an interaction

surface important for the temporal retention of ZRANB3

following PCNA ubiquitination by RAD18 and UBC13 at sites of

DNA damage.

ZRANB3 Remodels Replication Forks and Promotes
Fork Restart after Replication Arrest
In this study we show that ZRANB3, like SMARCAL1, facilitates

fork restart, and this activity depends on its interaction with poly-

ubiquitinated PCNA. Polyubiquitination of PCNA is known to

promote the template switching pathway, which could involve

fork regression or strand invasion mechanisms to allow bypass

of DNA lesions at or near stalled replication forks (Unk et al.,

2010). Using biochemical assays, we found that ZRANB3 and

SMARCAL1 are capable of regressing DNA structuresmimicking

stalled replication forks. This activity, which is distinct from the

previously described annealing helicase activity of ZRANB3

and SMARCAL1, provides a possible explanation for their role

in replication fork restart (Ciccia et al., 2009; Yusufzai and Kado-

naga, 2008, 2010).

The activity of ZRANB3 and SMARCAL1 resembles the

fork reversal activity of dsDNA translocases like FANCM and

HLTF and is mechanistically distinct from the fork regression

activity of BLM, WRN, and RECQ5, which, in contrast, are also

able to unwind forks with heterologous arms (Atkinson and

McGlynn, 2009; Yusufzai and Kadonaga, 2008, 2010). The

availability of several helicases/translocases displaying fork

regression activities provides the cell with multiple options that

could be employed in different contexts to maintain genomic

stability. As in the case of ZRANB3 and SMARCAL1, the recruit-

ment of the appropriate helicase/translocase needed to restart

DNA synthesis can be mediated by different DDR factors, such
lecular Cell 47, 396–409, August 10, 2012 ª2012 Elsevier Inc. 405



Figure 7. Disruption of D Loop Structures by ZRANB3 and SMARCAL1

(A) Dissociation of D loops (400 nM) by ZRANB3, eitherWT or helicase-dead (HD) (100 nM), as a function of time. Experiments were performed in buffer containing

either magnesium or calcium acetate (5 mM).

(B) D loop structures generated as described in (A) were incubated in a time course reaction with either WT or helicase-dead (HD) SMARCAL1 (100 nM) in the

presence of either magnesium or calcium acetate (5 mM).

(C) Schematics of the dissociation of preformed RAD51-containing D loop structures by ZRANB3 and SMARCAL1.

(D) Increasing amounts of ZRANB3 and SMARCAL1 (25, 50, and 200 nM), either WT or mutant, were incubated with preformed RAD51-containing D loops as

depicted in (C).
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as PCNA and RPA, which are able to recognize distinct DNA

intermediates formed during replication fork stalling and there-

fore operate in response to a multiplicity of replication fork

insults.

ZRANB3 Can Act as an Antirecombinase to Dissociate
D Loop Intermediates and Limit Sister Chromatid
Exchange after Replication Stress
ZRANB3 prevents SCEs after treatment with DNA damaging

agents, suggesting that ZRANB3 can prevent inappropriate

recombination at stalled/blocked replication forks. Suppression

of SCEs after replication stress could be ensured by preserving

the integrity of blocked replication forks, thereby limiting the

generation of recombination intermediates leading to SCE

formation. The fork remodeling activity of ZRANB3 could help

stabilize the stalled fork by reducing the amount of ssDNA

regions at the fork and by promoting the restart of the blocked

strand, thus preventing replication fork collapse (Atkinson and

McGlynn, 2009). It has recently been reported that fork reversal

is induced to prevent fork breakage following treatment with low

doses of camptothecin in U2OS cells (Ray Chaudhuri et al.,

2012). The sensitivity of ZRANB3 and SMARCAL1 depleted cells

to low doses of camptothecin could therefore be caused by

defective fork reversal and increased fork collapse in the

absence of ZRANB3 and SMARCAL1. ZRANB3 and SMARCAL1

could participate in alternative pathways involved in remodeling

and protecting stalled forks following camptothecin treatment,

as indicated by the additive sensitivity to camptothecin treat-

ment of the double ZRANB3 and SMARCAL1 depletion

compared to the respective individual depletions in U2OS cells.

The suppression of SCEsmediated by ZRANB3 could alterna-

tively result from a direct inhibition of inappropriate recombina-

tion at stalled or collapsed forks. Indeed, we have shown that

ZRANB3 is able to limit RAD51-mediated D loop formation and

can also dissociate preformed D loop structures in vitro. Surpris-

ingly, SMARCAL1 exhibited activity only toward preformed

D loops. This raises the possibility that ZRANB3 could play

both an early and a late role in regulating RAD51-dependent

strand invasion, whereas SMARCAL1 could function after strand

invasion is completed. The mechanisms by which these activi-

ties are exerted are still unclear. We have not observed disrup-

tion of RAD51 nucleoprotein filaments by ZRANB3, suggesting

that ZRANB3 does not act similarly to the recently described

PARI antirecombinase (Moldovan et al., 2012). Therefore,

ZRANB3 could limit the formation of D loops possibly by disso-

ciating early D loop intermediates. This process could also be

important to prevent recombination between partially homolo-

gous (homeologous) sequences.
(E) Quantification of the disruption of preformed RAD51-containing D loop structu

and SMARCAL1 proteins (100 nM) in a time course reaction (lower panel). The ac

bars represent the average and standard deviation of three or more independen

(F) Schematics of the formation of RAD51-containing D loop structures in the pr

(G) Formation of RAD51-containing D loop structures following addition of incre

represented in the schematics in (F).

(H) Formation of RAD51-containing D loop structures following addition of increa

(I) Quantification of the formation of RAD51-containing D loops in the presence of Z

and standard deviation of three or more independent experiments.

Mo
With respect to helicases/translocases capable of disrupting

D loops, ZRANB3 and SMARCAL1 act on preformed D loops

similarly to RTEL1 and Mph1, which are able to dissociate

preformed D loops without disrupting RAD51 nucleoprotein

filaments (Barber et al., 2008; Prakash et al., 2009). It should

be noted that ZRANB3 and SMARCAL1 are not ssDNA- or

dsDNA-dependent ATPases. The fact that their ATPase activity

is stimulated by forked DNA structures indicates that ZRANB3

and SMARCAL1 operate by binding to the branch point of forked

structures, where they can promote spooling and threading of

the DNA arms of these substrates (Bétous et al., 2012; Yusufzai

and Kadonaga, 2008, 2010). This is similar to the action of E. coli

RecG and phage T4 UvsW, which are able to catalyze both fork

regression and D loop disruption (Atkinson and McGlynn, 2009;

Singleton et al., 2001). We therefore suggest that ZRANB3 and

SMARCAL1 could be bona fide functional orthologs of RecG

and UvsW.

ZRANB3 May Participate in the Template Switching
Pathway of Postreplication Repair
Postreplication repair (PRR) promotes the bypass of DNA lesions

during DNA replication. Several lines of evidence suggest that

ZRANB3 could participate in the template switching pathway

of PRR. First, ZRANB3 can associate with polyubiquitinated

PCNA, which regulates template switching in yeast (Bergink

and Jentsch, 2009; Ulrich and Walden, 2010). In addition,

ZRANB3 associates with the WRNIP1 ATPase, which has been

suggested to modulate the activity of pold during template

switching (Saugar et al., 2011; Tsurimoto et al., 2005). Moreover,

ZRANB3 facilitates fork restart in a manner dependent on its

association with polyubiquitinated PCNA and catalyzes fork

regression, which has been proposed as a possible mechanism

by which template switching could operate. Finally, ZRANB3

limits the frequency of SCEs, similar to RAD18 and WRNIP1,

raising the possibility that these proteins may cooperate to limit

formation of crossover events occurring during template switch-

ing events at stalled or collapsed replication forks (Hayashi et al.,

2008; Szüts et al., 2006; Tateishi et al., 2003). Elucidating the

molecular mechanisms by which this error-free pathway of

template switching functions to maintain genomic stability

during DNA replication will have important implications in under-

standing howmutations and chromosomal rearrangements arise

in genomic disorders and cancer.

EXPERIMENTAL PROCEDURES

Construction of plasmid vectors, protein purification, in vitro pull-downs,

immunoprecipitation of protein complexes, cell culture, and biochemical
res following addition of increasing (upper panel) or fixed amounts of ZRANB3

tivity of BLM (100 nM) in the time course reaction is indicated. Points with error

t experiments.

esence of ZRANB3 and SMARCAL1.

asing amounts of ZRANB3 or SMARCAL1 proteins (50, 100, and 200 nM) as

sing amounts of either WT or mutant ZRANB3 (50, 100, and 200 nM).

RANB3 and SMARCAL1 proteins. Points with error bars represent the average
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assays were conducted as described in the Supplemental Experimental

Procedures.

Antibodies

Rabbit polyclonal anti-GST (1:1,000, Abcam, ab21070), anti-PCNA (1:1,000,

Abcam, ab18197), anti-ZRANB3 (1:1,000, Bethyl, A303-033A), anti-USP1

(1:500, Proteintech, 14346-1-AP), anti-WRNIP1 (1:1,000, Bethyl, A301-389A),

anti-RAD18 (1:1,000, Bethyl, A301-340A), anti-GAPDH (1:2,000, Santa Cruz,

sc-25778), mouse monoclonal anti-FLAG (1:1,000, Sigma, M2), anti-HA

(1:1,000, Covance, HA.11), anti-UBC13 (1:1,000, Invitrogen, 37-1100), and

anti-ubiquitin (1:1,000, Millipore, Ubi-1) antibodies were used in western blot

experiments.

RNAi Treatment

PCNA siGenome siRNA pool (Dharmacon, MU-003289-02-0002), USP1

siGenome siRNA (Dharmacon, D-006061-03-0005), RAD18 siGenome siRNA

pool (Dharmacon, MU-004591-00-0002), UBC13 siGenome siRNA pool

(Dharmacon, MU-003920-01-0002), ZRANB3 siRNA #1 (Dharmacon,

D-010025-03-0005), ZRANB3 siRNA #2 (Invitrogen, Silencer Select siRNA

s105378), and ZRANB3 siRNA #3 (Invitrogen, Silencer Select siRNA

s105379) were used to transfect U2OS cells or 293T-Rex cells. U2OS cells

with stable knockdown of ZRANB3 were obtained after infection with lentivi-

ruses derived from the pGIPZ vector containing ZRANB3 shRNA #1 (Open

Biosystems, V3LHS_357167, TGGTGTGTGTCAGCTCTGT) or ZRANB3

shRNA #2 (Open Biosystems, V2LHS_117955, CAAGAGATATCATCGATTA).

The SMARCAL1 shRNA sequence has been previously described (Ciccia

et al., 2009). Viruses carrying the firefly shRNA sequence (CCCGCCTGAAG

TCTCTGATTAA) were used to generate control U2OS cells.

Sister Chromatid Exchange Assay

U2OS cells were treated with control or ZRANB3 siRNA (50 nM); 72 hr after

siRNA transfection, cells were incubated with BrdU (10 mM); and 24 hr later,

cells were treated with or without mitomycin C (20 nM) or camptothecin

(2.5 nM) for another 24 hr. U2OS cells expressing a ZRANB3 cDNA clone resis-

tant to the ZRANB3 siRNA were subjected to similar treatment following

ZRANB3 siRNA transfection. U2OS cells expressing FF shRNA and ZRANB3

shRNAs #1 and #2 were similarly treated with BrdU and mitomycin C. Isolation

of metaphase chromosomes and staining of SCEs was performed as previ-

ously described (Hu et al., 2005). Statistical Mann-Whitney analyses were per-

formed with the Prism software (GraphPad Software).

DNA Fiber Analysis

U2OS cells were transfected with control or ZRANB3 siRNA (50 nM), and 96 hr

after siRNA transfection, cells were incubated with 34 mM IdU for 25 min. Cells

were then treated with 2 mM hydroxyurea for 2 hr and incubated in 250 mM

CldU for 40 min after washout of the drug. Spreading of DNA fibers on glass

slides was done as reported (Jackson and Pombo, 1998). Glass slides were

then washed in distilled water and in 2.5 M HCl for 45 min followed by three

washes in PBS. The slides were incubated for 1 hr in blocking buffer (PBS

with 1% BSA and 0.1% NP40) and then for 2 hr in rat anti-BrdU antibody

(Abcam, ab6326) diluted 1:500 in blocking buffer. After washing with blocking

buffer containing 500 mM NaCl, the slides were incubated for 2 hr in goat anti-

rat Alexa 488 antibody (1:250, Invitrogen). The slides were then washed with

PBS/1% NP40 and then incubated for 2 hr with mouse anti-BrdU antibody

diluted in blocking buffer (1:100, BD Biosciences, 347580). Following an addi-

tional wash with PBS/1% NP40, the fibers were stained for 2 hr with anti-

mouse Alexa 594 (1:250, Invitrogen). Fibers were then analyzed using an

Olympus confocal microscope. U2OS cells expressing WT or mutant ZRANB3

cDNA clones resistant to the ZRANB3 siRNA were subjected to similar treat-

ment following ZRANB3 siRNA transfection.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and Supplemental Experimental

Procedures and can be found with this article online at doi:10.1016/j.molcel.

2012.05.024.
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